Mapping Initial Hydrostatic Models in Godunov Codes

We look in detail at the process of mapping an astrophysical initial model from a stellar evolution code onto the computational grid of an explicit, Godunov-type code while maintaining hydrostatic equilibrium. This mapping process is common in astrophysical simulations, when it is necessary to follow short-timescale dynamics after a period of long-timescale buildup. We look at the effects of spatial resolution, boundary conditions, the treatment of the gravitational source terms in the hydrodynamics solver, and the initialization process itself. We conclude with a summary detailing the mapping process that yields the lowest ambient velocities in the mapped model.

[1]  Y. Fan,et al.  Anelastic Magnetohydrodynamic Equations for Modeling Solar and Stellar Convection Zones , 1999 .

[2]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[3]  R. Teyssier,et al.  Two-dimensional versus Three-dimensional Supernova Hydrodynamic Instability Growth , 2000, The Astrophysical Journal.

[4]  J. Truran,et al.  Evolutionary sequences for Nova V1974 Cygni using new nuclear reaction rates and opacities , 1998 .

[5]  K. Nomoto,et al.  Stable Numerical Method in Computation of Stellar Evolution , 1981 .

[6]  A. Gautschy,et al.  Computational methods for astrophysical fluid flow , 1998 .

[7]  Margarita Hernanz Classical nova explosions , 2002 .

[8]  Phillip Colella,et al.  Efficient Solution Algorithms for the Riemann Problem for Real Gases , 1985 .

[9]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[10]  S. Woosley,et al.  Presupernova evolution of massive stars. , 1978 .

[11]  Michael Zingale,et al.  Helium Detonations on Neutron Stars , 2000 .

[12]  Eli Livne,et al.  Reactive Flow in Nova Outbursts , 1997 .

[13]  Culbert B. Laney,et al.  Computational Gasdynamics: Waves , 1998 .

[14]  Two-dimensional Hydrodynamics of Pre-Core Collapse: Oxygen Shell Burning , 1997, astro-ph/9702239.

[15]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[16]  F. Douglas Swesty,et al.  The Accuracy, Consistency, and Speed of an Electron-Positron Equation of State Based on Table Interpolation of the Helmholtz Free Energy , 2000 .

[17]  B. Fryxell,et al.  FLASH: An Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes , 2000 .

[18]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[19]  J. Liebert,et al.  Observational Tests and Predictive Stellar Evolution , 2000, astro-ph/0103390.