Examining Hysteresis in Composite xLi2MnO3·(1−x)LiMO2 Cathode Structures

This paper reports the results of an initial investigation into the phenomenon of hysteresis in the charge–discharge profile of high-capacity, lithium- and manganese-rich “layered–layered” xLi2MnO3·(1–x)LiMO2 composite cathode structures (M = Mn, Ni, Co) and “layered–layered-spinel” derivatives that are of interest for Li-ion battery applications. In this study, electrochemical measurements, combined with in situ and ex situ X-ray characterization, are used to examine and compare electrochemical and structural processes that occur during charge (lithium extraction) and discharge (lithium insertion) of preconditioned cathodes. Electrochemical measurements of the open-circuit voltage versus lithium content demonstrate a ∼1 V hysteresis in site energy for approximately 12% of the total lithium content during the early cycles, which is markedly different from the hysteresis commonly observed in other intercalation materials. X-ray absorption data indicate structural differences in the cathode at the same stat...

[1]  K. Amine,et al.  A New Three‐Volt Spinel Li1 + x Mn1.5Ni0.5 O 4 for Secondary Lithium Batteries , 1996 .

[2]  Jeff Dahn,et al.  Hysteresis during Lithium Insertion in Hydrogen‐Containing Carbons , 1996 .

[3]  Daniel P. Abraham,et al.  Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells , 2002 .

[4]  Tsutomu Ohzuku,et al.  High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1 , 2011 .

[5]  J. Dahn,et al.  In situ x-ray diffraction and electrochemical studies of Li1−xNiO2 , 1993 .

[6]  T. Ohzuku,et al.  Comparative study of Li[LixMn2 − xO4 and LT-LiMnO2 for lithium-ion batteries , 1997 .

[7]  W. Craig Carter,et al.  Electrochemically Driven Phase Transitions in Insertion Electrodes for Lithium-Ion Batteries: Examples in Lithium Metal Phosphate Olivines , 2010 .

[8]  P. Bruce,et al.  Structural evolution of layered LixMnyO2 : Combined neutron, NMR, and electrochemical study , 2007 .

[9]  D. H. Everett,et al.  A general approach to hysteresis , 1952 .

[10]  Haoshen Zhou,et al.  Electrochemical kinetics of the 0.5Li2MnO3·0.5LiMn0.42Ni0.42Co0.16O2 ‘composite’ layered cathode material for lithium-ion batteries , 2012 .

[11]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[12]  T. Ohzuku,et al.  Electrochemistry and Structural Chemistry of LiNiO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1993 .

[13]  Wolfgang Dreyer,et al.  The thermodynamic origin of hysteresis in insertion batteries. , 2010, Nature materials.

[14]  W. R. McKinnon,et al.  Memory effects due to phase conversion and hysteresis in Li/LixMnO2 cells , 1991 .

[15]  Glenn G. Amatucci,et al.  Synthesis and Characterization of Nanostructured 4.7 V Li x Mn1.5Ni0.5O4 Spinels for High-Power Lithium-Ion Batteries , 2006 .

[16]  J. Dahn,et al.  In Situ X‐Ray Study of LiMnO2 , 1998 .

[17]  M. Balasubramanian,et al.  Li2MnO3-based composite cathodes for lithium batteries: A novel synthesis approach and new structures , 2011 .

[18]  J. Dahn,et al.  Lattice-gas model to understand voltage profiles of LiNi x Mn 2 − x O 4 / L i electrochemical cells , 1997 .

[19]  J. Newman,et al.  Hysteresis during Cycling of Nickel Hydroxide Active Material , 2001 .

[20]  Yoyo Hinuma,et al.  Effect of High Voltage on the Structure and Electrochemistry of LiNi0.5Mn0.5O2: A Joint Experimental and Theoretical Study , 2006 .

[21]  I. Nakai,et al.  X-ray absorption fine structure and neutron diffraction analyses of de-intercalation behavior in the LiCoO2 and LiNiO2 systems , 1997 .

[22]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[23]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[24]  John Newman,et al.  Proton Intercalation Hysteresis in Charging and Discharging Nickel Hydroxide Electrodes , 1999 .

[25]  Zhonghua Lu,et al.  Synthesis, Structure, and Electrochemical Behavior of Li [ Ni x Li1 / 3 − 2x / 3Mn2 / 3 − x / 3 ] O 2 , 2002 .

[26]  M. Balasubramanian,et al.  In Situ X‐Ray Absorption Studies of a High‐Rate LiNi0.85Co0.15 O 2 Cathode Material , 2000 .

[27]  Bing-Joe Hwang,et al.  Soft X-ray Absorption Spectroscopic and Raman Studies on Li1.2Ni0.2Mn0.6O2 for Lithium-Ion Batteries , 2012 .

[28]  S. Ong,et al.  A comparison of destabilization mechanisms of the layered Na(x)MO2 and Li(x)MO2 compounds upon alkali de-intercalation. , 2012, Physical chemistry chemical physics : PCCP.

[29]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[30]  Gerbrand Ceder,et al.  Layered-to-Spinel Phase Transition in Li x MnO2 , 2001 .

[31]  Christopher S. Johnson,et al.  Electrochemical and Structural Properties of xLi2M‘O3·(1−x)LiMn0.5Ni0.5O2 Electrodes for Lithium Batteries (M‘ = Ti, Mn, Zr; 0 ≤ x ⩽ 0.3) , 2004 .

[32]  D. H. Everett A general approach to hysteresis. Part 3.—A formal treatment of the independent domain model of hysteresis , 1954 .

[33]  P. Bruce,et al.  Combined Neutron Diffraction, NMR, and Electrochemical Investigation of the Layered-to-Spinel Transformation in LiMnO2 , 2004 .

[34]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[35]  Yongyao Xia,et al.  General synthesis of xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries , 2012 .

[36]  P. Biensan,et al.  Mechanisms Associated with the “Plateau” Observed at High Voltage for the Overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 System , 2008 .

[37]  D. H. Everett A general approach to hysteresis. Part 4. An alternative formulation of the domain model , 1955 .

[38]  M. Balasubramanian,et al.  In Situ X-Ray Absorption Study of a Layered Manganese-Chromium Oxide-Based Cathode Material , 2002 .

[39]  R. Raj,et al.  Thermodynamic measurements pertaining to the hysteretic intercalation of lithium in polymer-derived silicon oxycarbide , 2010 .

[40]  W. R. McKinnon,et al.  HEATS AND HYSTERESIS IN CALORIMETRY OF LI/LIXMNO2 CELLS , 1991 .

[41]  John T. Vaughey,et al.  The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes , 2004 .

[42]  M. Balasubramanian,et al.  Designing High-Capacity, Lithium-Ion Cathodes Using X-ray Absorption Spectroscopy , 2011 .

[43]  Xiao‐Qing Yang,et al.  Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. , 2005, Journal of the American Chemical Society.

[44]  J. Dahn,et al.  Synthesis and Electrochemical Studies of LiMnO2 Prepared at Low Temperatures , 1993 .

[45]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[46]  Miaofang Chi,et al.  Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study , 2011 .

[47]  A. Jansen,et al.  A Volume Averaged Approach to the Numerical Modeling of Phase-Transition Intercalation Electrodes Presented for LixC6 , 2012 .

[48]  A. Manthiram,et al.  Factors influencing the irreversible oxygen loss and reversible capacity in layered Li [Li1/3Mn2/3]O2-Li [M]O2 (M = Mn0.5- yNi0.5- yCo2y and Ni1- yCoy) solid solutions , 2007 .

[49]  Min Gyu Kim,et al.  Synthesis and electrochemical properties of nanocrystalline Li[NixLi(1−2x)/3Mn(2−x)/3]O2 prepared by a simple combustion method , 2004 .

[50]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[51]  D. H. Everett,et al.  A general approach to hysteresis. Part 2: Development of the domain theory , 1954 .

[52]  Zhonghua Lu,et al.  Staging Phase Transitions in Li x CoO2 , 2002 .

[53]  Shinichi Komaba,et al.  Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. , 2011, Journal of the American Chemical Society.

[54]  Daniel P. Abraham,et al.  Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2 , 2011 .

[55]  P. Bruce,et al.  New intercalation compounds for lithium batteries: layered LiMnO2 , 1999 .

[56]  Min Gyu Kim,et al.  Synthesis and Electrochemical Characteristics of Li [ Co x Li ( 1 / 3 − x / 3 ) Mn ( 2 / 3 − 2x / 3 ) ] O 2 Compounds , 2004 .

[57]  S. Panero,et al.  Solid solutions Li1+xV3O8 as cathodes for high rate secondary Li batteries , 1984 .

[58]  Yuichi Sato,et al.  In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 , 2011 .

[59]  Gerbrand Ceder,et al.  First-principles investigation of phase stability in Li x CoO 2 , 1998 .

[60]  K. Gallagher,et al.  xLi2MnO3·(1 − x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability , 2011 .

[61]  D. Abraham,et al.  Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy , 2008 .

[62]  S. Kraft,et al.  High resolution x‐ray absorption spectroscopy with absolute energy calibration for the determination of absorption edge energies , 1996 .

[63]  Kevin G. Gallagher,et al.  Countering the Voltage Decay in High Capacity xLi2MnO3•(1–x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries , 2012 .