Gene Ontology annotation highlights shared and divergent pathogenic strategies of type III effector proteins deployed by the plant pathogen Pseudomonas syringae pv tomato DC3000 and animal pathogenic Escherichia coli strains

[1]  K. Dolinski,et al.  Use and misuse of the gene ontology annotations , 2008, Nature Reviews Genetics.

[2]  Jian-Min Zhou,et al.  Plant pathogenic bacterial type III effectors subdue host responses. , 2008, Current opinion in microbiology.

[3]  Yu Qiu,et al.  Enteropathogen Resource Integration Center (ERIC): bioinformatics support for research on biodefense-relevant enterobacteria , 2007, Nucleic Acids Res..

[4]  D. Golenbock,et al.  YopJ targets TRAF proteins to inhibit TLR‐mediated NF‐κB, MAPK and IRF3 signal transduction , 2007, Cellular microbiology.

[5]  B. Finlay,et al.  Type III Secretion Systems and Disease , 2007, Clinical Microbiology Reviews.

[6]  G. Martin,et al.  A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity , 2007, Nature.

[7]  She Chen,et al.  A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. , 2007, Cell host & microbe.

[8]  A. Breitkreutz,et al.  Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. , 2007, Cell host & microbe.

[9]  A. Spiers,et al.  Biofilm formation and cellulose expression among diverse environmental Pseudomonas isolates. , 2006, Environmental microbiology.

[10]  C. Myers,et al.  Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains. , 2006, Molecular plant-microbe interactions : MPMI.

[11]  David S Guttman,et al.  Type III Effector Diversification via Both Pathoadaptation and Horizontal Transfer in Response to a Coevolutionary Arms Race , 2006, PLoS genetics.

[12]  Tetsuya Hayashi,et al.  An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination , 2006, Proceedings of the National Academy of Sciences.

[13]  David S Guttman,et al.  Terminal Reassortment Drives the Quantum Evolution of Type III Effectors in Bacterial Pathogens , 2006, PLoS pathogens.

[14]  G. Martin,et al.  Specific Bacterial Suppressors of MAMP Signaling Upstream of MAPKKK in Arabidopsis Innate Immunity , 2006, Cell.

[15]  S. Miller,et al.  A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1 , 2006, Cellular microbiology.

[16]  E. Allen-Vercoe,et al.  Enteropathogenic Escherichia coli Tir translocation and pedestal formation requires membrane cholesterol in the absence of bundle‐forming pili , 2006, Cellular microbiology.

[17]  G. Martin,et al.  Type III effector AvrPtoB requires intrinsic E3 ubiquitin ligase activity to suppress plant cell death and immunity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Hajime Kobayashi,et al.  NopP, a phosphorylated effector of Rhizobium sp. strain NGR234, is a major determinant of nodulation of the tropical legumes Flemingia congesta and Tephrosia vogelii , 2005, Molecular microbiology.

[19]  Alan Collmer,et al.  Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III Hop effector proteins in the plant pathogen Pseudomonas syringae. , 2005, Molecular plant-microbe interactions : MPMI.

[20]  Jia Liu,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[21]  W. Broughton,et al.  Rhizobium type III secretion systems: legume charmers or alarmers? , 2001, Current opinion in plant biology.

[22]  B. Finlay,et al.  Recruitment of Cytoskeletal and Signaling Proteins to Enteropathogenic and Enterohemorrhagic Escherichia coli Pedestals , 2001, Infection and Immunity.

[23]  B. Kenny,et al.  Enteropathogenic Escherichia coli (EPEC) Tir Receptor Molecule Does Not Undergo Full Modification When Introduced into Host Cells by EPEC-Independent Mechanisms , 2001, Infection and Immunity.

[24]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[25]  B. Finlay,et al.  Enterohemorrhagic Escherichia coliO157:H7 Produces Tir, Which Is Translocated to the Host Cell Membrane but Is Not Tyrosine Phosphorylated , 1999, Infection and Immunity.

[26]  M. Romantschuk,et al.  Characterization of type IV pilus genes in Pseudomonas syringae pv. tomato DC3000. , 1998, Molecular plant-microbe interactions : MPMI.

[27]  J. Greenberg,et al.  Programmed cell death: a way of life for plants. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Dong Wook Kim,et al.  An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses , 2007, Nature Immunology.