Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment.

The main objective in the development of nanomedicine is to obtain delivery platforms for targeted delivery of drugs or imaging agents for improved therapeutic efficacy, reduced side effects and increased diagnostic sensitivity. A (nano)material class that has been recognized for its controllable properties on many levels is ordered mesoporous inorganic materials, typically in the form of amorphous silica (SiO2). Characteristics for this class of materials include mesoscopic order, tunable pore dimensions in the (macro)molecular size range, a high pore volume and surface area, the possibility for selective surface functionality as well as morphology control. The robust but biodegradable ceramic matrix moreover provides shelter for incorporated agents (drugs, proteins, imaging agents, photosensitizers) leaving the outer particle surface free for further modification. The unique features make these materials particularly amenable to modular design, whereby functional moieties and features may be interchanged or combined to produce multifunctional nanodelivery systems combining targeting, diagnostic, and therapeutic actions. This review covers the latest developments related to the use of mesoporous silica nanoparticles (MSNs) as nanocarriers in biomedical applications, with special focus on cancer therapy and diagnostics.

[1]  Stefaan C. De Smedt,et al.  Cationic Polymer Based Gene Delivery Systems , 2000, Pharmaceutical Research.

[2]  J. Rosenholm,et al.  Towards establishing structure-activity relationships for mesoporous silica in drug delivery applications. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[3]  Shaobin Wang,et al.  Ordered mesoporous materials for drug delivery , 2009 .

[4]  T. Bein,et al.  Biotin-avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica. , 2009, Angewandte Chemie.

[5]  R. Josephs,et al.  Self-assembly of mesoporous nanoscale silica/gold composites , 2003 .

[6]  K. Hidajat,et al.  pH-Controllable drug release using hydrogel encapsulated mesoporous silica. , 2007, Chemical communications.

[7]  Taeghwan Hyeon,et al.  Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. , 2008, Angewandte Chemie.

[8]  Katy J. Lin,et al.  Core–Shell Synthesis of a Novel, Spherical, Mesoporous Silica/Platinum Nanocomposite: Pt/PVP@MCM‐41 , 2004 .

[9]  J. Eriksson,et al.  Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. , 2010, Small.

[10]  Uday B. Kompella,et al.  Nanoparticle technology for drug delivery , 2006 .

[11]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[12]  Chung-Yuan Mou,et al.  The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. , 2007, Biomaterials.

[13]  J. Zink,et al.  Mesoporous silicate materials as substrates for molecular machines and drug delivery , 2008 .

[14]  Yen Wei,et al.  Simultaneous immobilization of horseradish peroxidase and glucose oxidase in mesoporous sol-gel host materials. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[15]  L. Bergström,et al.  Intraparticle transport and release of dextran in silica spheres with cylindrical mesopores. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[16]  Eduardo Ruiz-Hitzky,et al.  Selective Functionalization of Mesoporous Silica , 2000 .

[17]  L. Bergström,et al.  Release and molecular transport of cationic and anionic fluorescent molecules in mesoporous silica spheres. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[18]  F. Xiao,et al.  pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery , 2005 .

[19]  G. Somorjai,et al.  Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. , 2009, Nature materials.

[20]  K. Holmberg,et al.  Synthesis of Stable Colloidal Suspensions of Ordered Mesostructured Silica from Sodium Metasilicate Using Pluronic P123 and Mildly Acidic Conditions , 2007 .

[21]  T. Asefa,et al.  Mesoporosity and functional group dependent endocytosis and cytotoxicity of silica nanomaterials. , 2009, Chemical research in toxicology.

[22]  M. Hartmann,et al.  Adsorption of Cytochrome c on Mesoporous Molecular Sieves: Influence of pH, Pore Diameter, and Aluminum Incorporation , 2004 .

[23]  Y. Hung,et al.  Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells , 2009 .

[24]  R. Martínez‐Máñez,et al.  Controlled delivery systems using antibody-capped mesoporous nanocontainers. , 2009, Journal of the American Chemical Society.

[25]  Victor S-Y Lin,et al.  Effect of surface functionalization of MCM-41-type mesoporous silica nanoparticles on the endocytosis by human cancer cells. , 2006, Journal of the American Chemical Society.

[26]  T. Bein,et al.  Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol) , 2010 .

[27]  Douglas C. Friedman,et al.  pH-responsive mechanised nanoparticles gated by semirotaxanes. , 2009, Chemical communications.

[28]  C. Brinker,et al.  Aerosol-assisted self-assembly of single-crystal core/nanoporous shell particles as model controlled release capsules. , 2006, Journal of the American Chemical Society.

[29]  Michael J. Sailor,et al.  Chitosan Hydrogel‐Capped Porous SiO2 as a pH Responsive Nano‐Valve for Triggered Release of Insulin , 2009 .

[30]  R. Martínez‐Máñez,et al.  pH- and photo-switched release of guest molecules from mesoporous silica supports. , 2009, Journal of the American Chemical Society.

[31]  J. Panda,et al.  The present and future of nanotechnology in human health care. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[32]  V. S. Lin,et al.  Mesoporous silica nanoparticles deliver DNA and chemicals into plants. , 2007, Nature nanotechnology.

[33]  J. Eriksson,et al.  Targeted intracellular delivery of hydrophobic agents using mesoporous hybrid silica nanoparticles as carrier systems. , 2009, Nano letters.

[34]  Marcel Garcia,et al.  Mannose-targeted mesoporous silica nanoparticles for photodynamic therapy. , 2009, Chemical communications.

[35]  Victor S-Y Lin,et al.  Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. , 2007, Chemical communications.

[36]  E. Garrone,et al.  Pores occlusion in MCM-41 spheres immersed in SBF and the effect on ibuprofen delivery kinetics: a quantitative model , 2010 .

[37]  B. K. Hodnett,et al.  Adsorption and activity of cytochrome c on mesoporous silicates , 2001 .

[38]  T. Bein,et al.  Large antibiotic molecule diffusion in confined mesoporous silica with controlled morphology , 2008 .

[39]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[40]  Ramón Martínez-Máñez,et al.  Toward the development of ionically controlled nanoscopic molecular gates. , 2004, Journal of the American Chemical Society.

[41]  Yufang Zhu,et al.  Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. , 2005, Angewandte Chemie.

[42]  Taeghwan Hyeon,et al.  Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. , 2010, Journal of the American Chemical Society.

[43]  Yuhan Sun,et al.  pH-Responsive Drug Release from Polymer-Coated Mesoporous Silica Spheres , 2009 .

[44]  Zhenghe Xu,et al.  Template‐Assisted Synthesis of Mesoporous Magnetic Nanocomposite Particles , 2004 .

[45]  Y. Sugahara,et al.  Adsorption of taxol into ordered mesoporous silicas with various pore diameters , 1999 .

[46]  Cecilia Sahlgren,et al.  Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles--opportunities & challenges. , 2010, Nanoscale.

[47]  Zhihui Dai,et al.  Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. , 2004, Biosensors & bioelectronics.

[48]  Tao Wu,et al.  Tunable redox-responsive hybrid nanogated ensembles. , 2008, Journal of the American Chemical Society.

[49]  M. Ferrari Cancer nanotechnology: opportunities and challenges , 2005, Nature Reviews Cancer.

[50]  Edmond Magner,et al.  Proteins in mesoporous silicates. , 2008, Angewandte Chemie.

[51]  Mark E. Davis,et al.  Nanoparticle therapeutics: an emerging treatment modality for cancer , 2008, Nature Reviews Drug Discovery.

[52]  G. Cavaletti,et al.  Recent development, applications, and perspectives of mesoporous silica particles in medicine and biotechnology. , 2009, Current medicinal chemistry.

[53]  C. Haynes,et al.  Synthesis and Characterization of Biocompatible and Size-Tunable Multifunctional Porous Silica Nanoparticles , 2009 .

[54]  J. Michaelis,et al.  Nanostructured silica materials as drug-delivery systems for Doxorubicin: single molecule and cellular studies. , 2009, Nano letters.

[55]  Ivan Gorelikov,et al.  Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. , 2008, Nano letters.

[56]  Juan L. Vivero-Escoto,et al.  Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system. , 2009, Chemical communications.

[57]  Hsiung-Lin Tu,et al.  In vitro Studies of Functionalized Mesoporous Silica Nanoparticles for Photodynamic Therapy , 2009 .

[58]  Min Zhang,et al.  Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. , 2009, Small.

[59]  Chung-Yuan Mou,et al.  Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers , 2005 .

[60]  Jenny Andersson,et al.  Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices , 2004 .

[61]  M. Saboungi,et al.  Mesoporous silica nanoparticles enhance MTT formazan exocytosis in HeLa cells and astrocytes. , 2009, Toxicology in vitro : an international journal published in association with BIBRA.

[62]  Ling Ye,et al.  Effect of surface functionality of magnetic silica nanoparticles on the cellular uptake by glioma cells in vitro , 2009 .

[63]  F. Iemma,et al.  Silica-Based Mesoporous Materials as Drug Delivery System for Methotrexate Release , 2007, Drug delivery.

[64]  D. Zhao,et al.  Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. , 2008, Journal of the American Chemical Society.

[65]  J. van Humbeeck,et al.  Physical state of poorly water soluble therapeutic molecules loaded into SBA-15 ordered mesoporous silica carriers: a case study with itraconazole and ibuprofen. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[66]  Brian G. Trewyn,et al.  Mesoporous Silica Nanoparticles for Drug Delivery and Biosensing Applications , 2007 .

[67]  Robert Langer,et al.  The biocompatibility of mesoporous silicates. , 2008, Biomaterials.

[68]  J. Rosenholm,et al.  Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles , 2010 .

[69]  Ye-Zi You,et al.  Temperature-controlled uptake and release in PNIPAM-modified porous silica nanoparticles , 2008 .

[70]  Zhihui Dai,et al.  Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix. , 2004, Analytical biochemistry.

[71]  I. Kwon,et al.  A mesoporous silica nanoparticle with charge-convertible pore walls for efficient intracellular protein delivery , 2010, Nanotechnology.

[72]  Chin-Tu Chen,et al.  Near‐Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution , 2009 .

[73]  Jianlin Shi,et al.  Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition , 2009 .

[74]  Chen Chang,et al.  Gadolinium(III)-Incorporated Nanosized Mesoporous Silica as Potential Magnetic Resonance Imaging Contrast Agents , 2004 .

[75]  F. Tseng,et al.  Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: potential cancer theranostics , 2009 .

[76]  Monty Liong,et al.  Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. , 2007, Small.

[77]  Victor S-Y Lin,et al.  Mesoporous silica nanoparticles for intracellular delivery of membrane-impermeable proteins. , 2007, Journal of the American Chemical Society.

[78]  Yuen A. Lau,et al.  Mechanised nanoparticles for drug delivery. , 2009, Nanoscale.

[79]  Xiao-hui Liu,et al.  Facile synthesis of ordered magnetic mesoporous gamma-Fe2O3/SiO2 nanocomposites with diverse mesostructures. , 2008, Journal of colloid and interface science.

[80]  L. Juneja,et al.  Environmental friendly rapid mass production synthetic process of highly ordered nanometer sized mesoporous silica using a combination of acid-base and evaporation approach , 2008 .

[81]  Weili Lin,et al.  Mesoporous silica nanospheres as highly efficient MRI contrast agents. , 2008, Journal of the American Chemical Society.

[82]  A. Stein,et al.  Comparative Studies of Grafting and Direct Syntheses of Inorganic−Organic Hybrid Mesoporous Materials , 1999 .

[83]  G. Giammona,et al.  Mesoporous silicate as matrix for drug delivery systems of non-steroidal antinflammatory drugs , 2002 .

[84]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[85]  C. C. Landry,et al.  Adsorption of DNA into mesoporous silica. , 2006, The journal of physical chemistry. B.

[86]  Myung-Haing Cho,et al.  Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. , 2008, International journal of pharmaceutics.

[87]  Jianlin Shi,et al.  The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. , 2010, Biomaterials.

[88]  Juan L. Vivero-Escoto,et al.  Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. , 2009, Journal of the American Chemical Society.

[89]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[90]  V. S. Lin,et al.  Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. , 2009, Journal of the American Chemical Society.

[91]  Chen Chang,et al.  Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous , 2006 .

[92]  R. Martínez‐Máñez,et al.  Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[93]  Huang-Hao Yang,et al.  An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates , 2009 .

[94]  Chung-Yuan Mou,et al.  Mesoporous silica nanoparticles improve magnetic labeling efficiency in human stem cells. , 2008, Small.

[95]  Chulhee Kim,et al.  Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. , 2009, Journal of the American Chemical Society.

[96]  Yuan Yuan,et al.  Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control. , 2009, Biomaterials.

[97]  Chung-Yuan Mou,et al.  Mesoporous silica nanoparticles as a delivery system of gadolinium for effective human stem cell tracking. , 2008, Small.

[98]  R. Denoyel,et al.  Impregnation of vitamin E acetate on silica mesoporous phases using supercritical carbon dioxide , 2009 .

[99]  Jing He,et al.  Architecture and performance of mesoporous silica‐lipase hybrids via non‐covalent interfacial adsorption , 2009 .

[100]  J. Devoisselle,et al.  Synthesis and characterisation of ibuprofen-anchored MCM-41 silica and silica gel , 2003 .

[101]  M. Andersson,et al.  Ibuprofen loading into mesostructured silica using liquid carbon dioxide as a solvent , 2009 .

[102]  Victor S-Y Lin,et al.  A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. , 2004, Journal of the American Chemical Society.

[103]  Wenru Zhao,et al.  Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. , 2005, Journal of the American Chemical Society.

[104]  Monty Liong,et al.  Mesoporous Silica Nanoparticles for Cancer Therapy: Energy-Dependent Cellular Uptake and Delivery of Paclitaxel to Cancer Cells , 2007, Nanobiotechnology : the journal at the intersection of nanotechnology, molecular biology, and biomedical sciences.

[105]  C. Brinker,et al.  Ordered nanocrystal/silica particles self-assembled from nanocrystal micelles and silicate. , 2006, Chemical communications.

[106]  Brian G Trewyn,et al.  Mesoporous silica nanomaterial-based biotechnological and biomedical delivery systems. , 2007, Nanomedicine.

[107]  J. Zink,et al.  Antimicrobial Activity of Silver Nanocrystals Encapsulated in Mesoporous Silica Nanoparticles , 2009 .

[108]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[109]  Alfons van Blaaderen,et al.  Metallodielectric Colloidal Core−Shell Particles for Photonic Applications , 2002 .

[110]  J. Rosenholm,et al.  Hyperbranching Surface Polymerization as a Tool for Preferential Functionalization of the Outer Surface of Mesoporous Silica , 2008 .

[111]  J. Fraser Stoddart,et al.  Mesostructured multifunctional nanoparticles for imaging and drug delivery , 2009 .

[112]  Jianlin Shi,et al.  Particle size, uniformity, and mesostructure control of magnetic core/mesoporous silica shell nanocomposite spheres , 2006 .

[113]  Johann Kecht,et al.  Selective Functionalization of the Outer and Inner Surfaces in Mesoporous Silica Nanoparticles , 2008 .

[114]  Zongxi Li,et al.  Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells. , 2010, Small.

[115]  Yufang Zhu,et al.  A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug , 2007 .

[116]  M. Botta,et al.  Relaxivity modulation in Gd-functionalised mesoporous silicas. , 2009, Chemical communications.

[117]  D. Avnir,et al.  Recent bio-applications of sol–gel materials , 2006 .

[118]  R. Josephs,et al.  Self‐Assembled Highly Ordered Spherical Mesoporous Silica/Gold Nanocomposites , 2002 .

[119]  Y. Park,et al.  Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell : mesopore channels perpendicular to the surface , 2007 .

[120]  Yuhan Sun,et al.  A study of carboxylic-modified mesoporous silica in controlled delivery for drug famotidine , 2006 .

[121]  Mina Choi,et al.  The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. , 2009, Toxicology letters.

[122]  Rasmus Niemi,et al.  Targeting of porous hybrid silica nanoparticles to cancer cells. , 2009, ACS nano.

[123]  L. J. Mueller,et al.  pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. , 2010, Journal of the American Chemical Society.

[124]  K. Kuroda,et al.  The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. , 1990 .

[125]  T. Bein,et al.  Tuning drug uptake and release rates through different morphologies and pore diameters of confined mesoporous silica , 2009 .

[126]  Wayne Ouellette,et al.  Cytotoxicity of mesoporous silica nanomaterials. , 2008, Journal of inorganic biochemistry.

[127]  B. Chmelka,et al.  Functionalization of mesostructured inorganic–organic and porous inorganic materials , 2009 .

[128]  Saji George,et al.  Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. , 2009, ACS nano.

[129]  Jung Ho Yu,et al.  Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. , 2006, Journal of the American Chemical Society.

[130]  Hung-Ting Chen,et al.  Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release. , 2007, Accounts of chemical research.

[131]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. , 2008, Advanced drug delivery reviews.

[132]  Patrick Augustijns,et al.  Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica. , 2008, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[133]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[134]  V. S. Lin,et al.  Gatekeeping layer effect: a poly(lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters. , 2004, Journal of the American Chemical Society.

[135]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[136]  Atsushi Shimojima,et al.  Organic-inorganic mesoporous nanocarriers integrated with biogenic ligands. , 2007, Small.

[137]  D. Brühwiler,et al.  Accessibility of Amino Groups in Postsynthetically Modified Mesoporous Silica , 2009 .

[138]  M. Hartmann Ordered Mesoporous Materials for Bioadsorption and Biocatalysis , 2005 .

[139]  Chung-Yuan Mou,et al.  Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. , 2009, Small.

[140]  M. Hartmann,et al.  Adsorption of Lysozyme over Mesoporous Molecular Sieves MCM-41 and SBA-15: Influence of pH and Aluminum Incorporation , 2004 .

[141]  Chung-Yuan Mou,et al.  Multifunctional Mesoporous Silica Nanoparticles for Intracellular Labeling and Animal Magnetic Resonance Imaging Studies , 2008, Chembiochem : a European journal of chemical biology.

[142]  H. Nozaki,et al.  Formation mechanism of monodispersed mesoporous silica spheres and its application to the synthesis of core/shell particles , 2006 .

[143]  María Vallet-Regí,et al.  Mesoporous materials for drug delivery. , 2007, Angewandte Chemie.

[144]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[145]  Shanshan Huang,et al.  Magnetic Mesoporous Silica Spheres for Drug Targeting and Controlled Release , 2009 .

[146]  Jung Ho Kim,et al.  Synthesis of monodisperse silica spheres with solid core and mesoporous shell: Morphological control of mesopores , 2008 .

[147]  C Jeffrey Brinker,et al.  Electrostatically mediated liposome fusion and lipid exchange with a nanoparticle-supported bilayer for control of surface charge, drug containment, and delivery. , 2009, Journal of the American Chemical Society.

[148]  K. Balkus,et al.  Enzyme immobilization in MCM-41 molecular sieve , 1996 .

[149]  Galen D. Stucky,et al.  MESOPOROUS SILICATE SEQUESTRATION AND RELEASE OF PROTEINS , 1999 .

[150]  Maria Strømme,et al.  Mesoporous silica particles induce size dependent effects on human dendritic cells. , 2007, Nano letters.

[151]  L. T. Zhuravlev Surface characterization of amorphous silica—a review of work from the former USSR , 1993 .

[152]  Wei-Hsuan Chen,et al.  The FASEB Journal express article 10.1096/fj.05-4288fje. Published online October 17, 2005. , 2022 .

[153]  Study of adsorption processes of model drugs at supercritical conditions using partial least squares regression , 2002 .

[154]  M. Fujiwara,et al.  Switching catalytic reaction conducted in pore void of mesoporous material by redox gate control. , 2006, Chemical communications.

[155]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[156]  J. Dobson,et al.  Surface activation and targeting strategies of superparamagnetic iron oxide nanoparticles in cancer-oriented diagnosis and therapy. , 2010, Nanomedicine.

[157]  M. T. Navarro,et al.  Single Gold Nanoparticles Encapsulated in Monodispersed Regular Spheres of Mesostructured Silica Produced by Pseudomorphic Transformation , 2007 .

[158]  Di Zhang,et al.  Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[159]  Ana B. Descalzo,et al.  Mesoporous silica materials with covalently anchored phenoxazinone dyes as fluorescent hybrid materials for vapour sensing , 2007 .

[160]  C. C. Landry,et al.  Diffusion-based deprotection in mesoporous materials: a strategy for differential functionalization of porous silica particles. , 2007, Journal of the American Chemical Society.

[161]  O. Terasaki,et al.  A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure , 2003, Nature materials.

[162]  R. Martínez‐Máñez,et al.  Controlled release using mesoporous materials containing gate-like scaffoldings , 2009, Expert opinion on drug delivery.

[163]  Chung-Yuan Mou,et al.  Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling. , 2007, Nano letters.