Antibody-mediated cell entry of SARS-CoV-2

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters host cells by first engaging its cellular receptor angiotensin converting enzyme 2 (ACE2) to induce conformational changes in the virus-encoded spike protein and fusion between the viral and target cell membranes. We report here that certain monoclonal neutralizing antibodies against distinct epitopic regions of the receptor-binding domain of the spike can replace ACE2 to serve as a receptor and efficiently support membrane fusion and viral infectivity. These receptor-like antibodies can function in the form of a complex of their soluble immunoglobulin G with Fc-gamma receptor I, a chimera of their antigen-binding fragment with the transmembrane domain of ACE2 or a membrane-bound B cell receptor, indicating that ACE2 and its specific interactions with the spike protein are dispensable for SARS-CoV-2 entry. These results suggest that antibody responses against SARS-CoV-2 may expand the viral tropism to otherwise nonpermissive cell types; they have important implications for viral transmission and pathogenesis.

[1]  J. Theiler,et al.  Substantial Neutralization Escape by SARS-CoV-2 Omicron Variants BQ.1.1 and XBB.1 , 2023, The New England journal of medicine.

[2]  A. Gordon,et al.  Alarming antibody evasion properties of rising SARS-CoV-2 BQ and XBB subvariants , 2022, Cell.

[3]  Haisun Zhu,et al.  Cryo-EM structure of SARS-CoV-2 postfusion spike in membrane , 2022, bioRxiv.

[4]  S. Pittaluga,et al.  SARS-CoV-2 infection and persistence in the human body and brain at autopsy , 2022, Nature.

[5]  Theresa L. Chang,et al.  ACE2-Independent Alternative Receptors for SARS-CoV-2 , 2022, Viruses.

[6]  Benjamin Bowe,et al.  Acute and postacute sequelae associated with SARS-CoV-2 reinfection , 2022, Nature Medicine.

[7]  J. Yewdell,et al.  Enhanced virulence and waning vaccine-elicited antibodies account for breakthrough infections caused by SARS-CoV-2 delta and beyond , 2022, iScience.

[8]  F. Alt,et al.  An Antibody from Single Human VH-rearranging Mouse Neutralizes All SARS-CoV-2 Variants Through BA.5 by Inhibiting Membrane Fusion , 2022, Science Immunology.

[9]  S. Whelan,et al.  SARS-CoV-2 requires acidic pH to infect cells , 2022, bioRxiv.

[10]  D. Neuberg,et al.  Immune recall improves antibody durability and breadth to SARS-CoV-2 variants , 2022, Science immunology.

[11]  J. Lieberman,et al.  FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation , 2022, Nature.

[12]  A. Telenti,et al.  Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift , 2021, Nature.

[13]  Rong-Fong Shen,et al.  SARS-CoV-2 B.1.1.7 (alpha) and B.1.351 (beta) variants induce pathogenic patterns in K18-hACE2 transgenic mice distinct from early strains , 2021, Nature Communications.

[14]  M. Farzan,et al.  Mechanisms of SARS-CoV-2 entry into cells , 2021, Nature reviews. Molecular cell biology.

[15]  S. Subramaniam,et al.  Structural analysis of receptor binding domain mutations in SARS-CoV-2 variants of concern that modulate ACE2 and antibody binding , 2021, bioRxiv.

[16]  J. Mascola,et al.  Durability of mRNA-1273 vaccine–induced antibodies against SARS-CoV-2 variants , 2021, Science.

[17]  M. Beltramello,et al.  SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape , 2021, Nature.

[18]  S. Boulant,et al.  TMPRSS2 expression dictates the entry route used by SARS‐CoV‐2 to infect host cells , 2021, The EMBO journal.

[19]  C. Woods,et al.  In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies , 2021, Cell.

[20]  M. Giacca,et al.  The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets , 2021, Nature Microbiology.

[21]  P. Taylor,et al.  Neutralizing monoclonal antibodies for treatment of COVID-19 , 2021, Nature Reviews Immunology.

[22]  D. Neuberg,et al.  Memory B cell repertoire for recognition of evolving SARS-CoV-2 spike , 2021, bioRxiv.

[23]  Bingjun Wang,et al.  ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species , 2021, Nature Ecology & Evolution.

[24]  Helio T. Navarro,et al.  Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia , 2020, Nature.

[25]  Weijin Huang,et al.  Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development , 2020, Signal Transduction and Targeted Therapy.

[26]  A. Griffiths,et al.  A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent , 2020, Nature Structural & Molecular Biology.

[27]  Yongfei Cai,et al.  Structural impact on SARS-CoV-2 spike protein by D614G substitution , 2020, bioRxiv.

[28]  M. Nussenzweig,et al.  SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies , 2020, Nature.

[29]  T. Ideker,et al.  Functional Landscape of SARS-CoV-2 Cellular Restriction , 2020, bioRxiv.

[30]  Peter B Rosenthal,et al.  Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion , 2020, Nature.

[31]  S. Kent,et al.  Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies , 2020, Nature Microbiology.

[32]  Ralf Bartenschlager,et al.  Structures and distributions of SARS-CoV-2 spike proteins on intact virions , 2020, Nature.

[33]  J. Ravetch,et al.  The role of IgG Fc receptors in antibody-dependent enhancement , 2020, Nature Reviews Immunology.

[34]  Catherine Z. Chen,et al.  Identifying SARS-CoV-2 entry inhibitors through drug repurposing screens of SARS-S and MERS-S pseudotyped particles , 2020, bioRxiv.

[35]  Beata Turoňová,et al.  In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges , 2020, Science.

[36]  I. Trougakos,et al.  Expression profiling meta-analysis of ACE2 and TMPRSS2, the putative anti-inflammatory receptor and priming protease of SARS-CoV-2 in human cells, and identification of putative modulators , 2020, Redox Biology.

[37]  Qiang Zhou,et al.  A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 , 2020, Science.

[38]  J. Sodroski,et al.  Potent Neutralizing Antibodies Directed to Multiple Epitopes on SARS-CoV-2 Spike , 2020, bioRxiv.

[39]  D. Lauffenburger,et al.  Quick COVID-19 Healers Sustain Anti-SARS-CoV-2 Antibody Production , 2020, Cell.

[40]  Shaun Rawson,et al.  Distinct conformational states of SARS-CoV-2 spike protein , 2020, Science.

[41]  M. V. van Breemen,et al.  Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability , 2020, Science.

[42]  Fabian J Theis,et al.  SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes , 2020, Nature Medicine.

[43]  Linqi Zhang,et al.  Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor , 2020, Nature.

[44]  K. Shi,et al.  Structural basis of receptor recognition by SARS-CoV-2 , 2020, Nature.

[45]  A. Walls,et al.  Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein , 2020, Cell.

[46]  G. Herrler,et al.  SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor , 2020, Cell.

[47]  B. Graham,et al.  Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation , 2020, Science.

[48]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[49]  D. Veesler,et al.  Structural insights into coronavirus entry , 2019, Advances in Virus Research.

[50]  D. Cummings,et al.  Reconstruction of antibody dynamics and infection histories to evaluate dengue risk , 2018, Nature.

[51]  M. Halloran,et al.  Antibody-dependent enhancement of severe dengue disease in humans , 2017, Science.

[52]  J. Taubenberger,et al.  IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity , 2017, Science.

[53]  G. Whittaker,et al.  Murine Leukemia Virus (MLV)-based Coronavirus Spike-pseudotyped Particle Production and Infection. , 2016, Bio-protocol.

[54]  Hanqin Peng,et al.  Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein , 2015, Science.

[55]  K. Tsumoto,et al.  Structural basis for binding of human IgG1 to its high-affinity human receptor FcγRI , 2015, Nature Communications.

[56]  M. Kielian Mechanisms of Virus Membrane Fusion Proteins. , 2014, Annual review of virology.

[57]  R. Baric,et al.  Receptor usage and cell entry of bat coronavirus HKU4 provide insight into bat-to-human transmission of MERS coronavirus , 2014, Proceedings of the National Academy of Sciences.

[58]  Yi Shi,et al.  Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26 , 2013, Nature.

[59]  Christian Drosten,et al.  Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC , 2013, Nature.

[60]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[61]  Yi-Lun Lin,et al.  Structural basis for multifunctional roles of mammalian aminopeptidase N , 2012, Proceedings of the National Academy of Sciences.

[62]  Fang Li,et al.  Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor , 2011, Proceedings of the National Academy of Sciences.

[63]  S. Harrison Viral membrane fusion , 2008, Nature Structural &Molecular Biology.

[64]  J. Ravetch,et al.  Fcgamma receptors as regulators of immune responses. , 2008, Nature reviews. Immunology.

[65]  Ben Berkhout,et al.  Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  John L. Sullivan,et al.  Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus , 2003, Nature.

[67]  B. Bosch,et al.  The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex , 2003, Journal of Virology.

[68]  S. Harrison,et al.  Structural basis for membrane fusion by enveloped viruses. , 1999, Molecular membrane biology.

[69]  T. Saito,et al.  FcR gamma-chain is essential for both surface expression and function of human Fc gamma RI (CD64) in vivo. , 1996, Blood.

[70]  A. Look,et al.  Human aminopeptidase N is a receptor for human coronavirus 229E , 1992, Nature.

[71]  B. Delmas,et al.  Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV , 1992, Nature.

[72]  C. Dieffenbach,et al.  Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV , 1991, Journal of virology.

[73]  SB Halstead,et al.  Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody , 1977, The Journal of experimental medicine.