Solvent‐Controlled Rhodium‐Catalyzed C6‐Selective C−H Alkenylation and Alkylation of 2‐Pyridones with Acrylates

[1]  T. Besset,et al.  A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry , 2018, Chemical Society reviews.

[2]  R. Sessions,et al.  Unlocking Nicotinic Selectivity via Direct C‒H Functionalization of (−)-Cytisine , 2018, Chem.

[3]  G. McGlacken,et al.  Transition Metal Mediated C-H Activation of 2-Pyrones, 2-Pyridones, 2-Coumarins and 2-Quinolones , 2018, European Journal of Organic Chemistry.

[4]  Robert J. Phipps,et al.  Access to the meta position of arenes through transition metal catalysed C-H bond functionalisation: a focus on metals other than palladium. , 2018, Chemical Society reviews.

[5]  T. Rovis,et al.  Complementary Strategies for Directed C(sp3 )-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer. , 2018, Angewandte Chemie.

[6]  Tomislav Rovis,et al.  Komplementäre Strategien für die dirigierte C(sp3)‐H‐Funktionalisierung: ein Vergleich von übergangsmetallkatalysierter Aktivierung, Wasserstoffatomtransfer und Carben‐ oder Nitrentransfer , 2018 .

[7]  K. Hirano,et al.  A lesson for site-selective C–H functionalization on 2-pyridones: radical, organometallic, directing group and steric controls , 2017, Chemical science.

[8]  D. Das,et al.  A Mild Rhodium Catalyzed Direct Synthesis of Quinolones from Pyridones: Application in the Detection of Nitroaromatics. , 2017, The Journal of organic chemistry.

[9]  Sang‐gi Lee,et al.  Transition metal-catalyzed site- and regio-divergent C-H bond functionalization. , 2017, Chemical Society reviews.

[10]  K. Hirano,et al.  Nickel-Catalyzed Directed C6-Selective C-H Alkylation of 2-Pyridones with Dienes and Activated Alkenes. , 2017, The Journal of organic chemistry.

[11]  D. Das,et al.  Rhodium(III)-Catalyzed C6-Selective Arylation of 2-Pyridones and Related Heterocycles Using Quinone Diazides: Syntheses of Heteroarylated Phenols. , 2017, The Journal of organic chemistry.

[12]  K. Hirano,et al.  Iridium-Catalyzed Site-Selective C–H Borylation of 2-Pyridones , 2017, Synthesis.

[13]  Fen Wang,et al.  Transition metal-catalysed couplings between arenes and strained or reactive rings: combination of C-H activation and ring scission. , 2016, Chemical Society reviews.

[14]  Hualiang Jiang,et al.  Rhodium(III)-Catalyzed Site-Selective C-H Alkylation and Arylation of Pyridones Using Organoboron Reagents. , 2016, Organic letters.

[15]  J. Mascareñas,et al.  Metal-Catalyzed Annulations through Activation and Cleavage of C-H Bonds. , 2016, Angewandte Chemie.

[16]  Moisés Gulías,et al.  Metallkatalysierte Anellierungen durch Aktivierung und Spaltung von C‐H‐Bindungen , 2016 .

[17]  Jin-Quan Yu,et al.  Eine einfache und vielseitige dirigierende Amidgruppe zur Funktionalisierung von C-H-Bindungen , 2016 .

[18]  jin-quan yu,et al.  A Simple and Versatile Amide Directing Group for C-H Functionalizations. , 2016, Angewandte Chemie.

[19]  K. Hirano,et al.  Rhodium-Catalyzed C6-Selective C-H Borylation of 2-Pyridones. , 2016, Organic letters.

[20]  V. Boyarskiy,et al.  Alkenylation of Arenes and Heteroarenes with Alkynes. , 2016, Chemical reviews.

[21]  D. Das,et al.  C6-Selective Direct Alkylation of Pyridones with Diazo Compounds under Rh(III)-Catalyzed Mild Conditions. , 2016, The Journal of organic chemistry.

[22]  Xingwei Li,et al.  Formal Gold- and Rhodium-Catalyzed Regiodivergent C-H Alkynylation of 2-Pyridones. , 2016, The Journal of organic chemistry.

[23]  K. Hirano,et al.  Recent Advances in Copper-mediated Direct Biaryl Coupling , 2015 .

[24]  K. Hirano,et al.  Copper-mediated C6-selective dehydrogenative heteroarylation of 2-pyridones with 1,3-azoles. , 2014, Angewandte Chemie.

[25]  K. Hirano,et al.  Manganese-mediated C3-selective direct alkylation and arylation of 2-pyridones with diethyl malonates and arylboronic acids. , 2014, The Journal of organic chemistry.

[26]  K. Hirano,et al.  Nickel-catalyzed direct alkylation of heterocycles with α-bromo carbonyl compounds: C3-selective functionalization of 2-pyridones. , 2013, Chemistry.

[27]  H. McRobbie,et al.  Efficacy of cytisine in helping smokers quit: systematic review and meta-analysis , 2013, Thorax.

[28]  T. Hanada,et al.  Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile (perampanel): a novel, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptor antagonist. , 2012, Journal of medicinal chemistry.

[29]  Junichiro Yamaguchi,et al.  Funktionalisierung von C‐H‐Bindungen: neue Synthesemethoden für Naturstoffe und Pharmazeutika , 2012 .

[30]  Junichiro Yamaguchi,et al.  C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. , 2012, Angewandte Chemie.

[31]  A. Lei,et al.  Bond formations between two nucleophiles: transition metal catalyzed oxidative cross-coupling reactions. , 2011, Chemical reviews.

[32]  T. Satoh,et al.  Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis. , 2010, Chemistry.

[33]  Melanie S Sanford,et al.  Palladium-catalyzed ligand-directed C-H functionalization reactions. , 2010, Chemical reviews.

[34]  L. Ackermann,et al.  Übergangsmetallkatalysierte direkte Arylierungen von (Hetero)Arenen durch C‐H‐Bindungsbruch , 2009 .

[35]  A. Kapdi,et al.  Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. , 2009, Angewandte Chemie.

[36]  F. Kakiuchi,et al.  Transition-Metal-CatalyzedCarbon-Carbon Bond Formation via Carbon-HydrogenBond Cleavage , 2008 .

[37]  S. Gil,et al.  New Synthetic Methods to 2-Pyridone Rings , 2005 .

[38]  I. Lagoja Pyrimidine as Constituent of Natural Biologically Active Compounds , 2005, Chemistry & biodiversity.

[39]  K. Hirano,et al.  Highly C3-Selective Direct Alkylation and Arylation of 2-Pyridones under Visible-Light-Promoted Photoredox Catalysis , 2016 .