Solvent‐Controlled Rhodium‐Catalyzed C6‐Selective C−H Alkenylation and Alkylation of 2‐Pyridones with Acrylates
暂无分享,去创建一个
[1] T. Besset,et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry , 2018, Chemical Society reviews.
[2] R. Sessions,et al. Unlocking Nicotinic Selectivity via Direct C‒H Functionalization of (−)-Cytisine , 2018, Chem.
[3] G. McGlacken,et al. Transition Metal Mediated C-H Activation of 2-Pyrones, 2-Pyridones, 2-Coumarins and 2-Quinolones , 2018, European Journal of Organic Chemistry.
[4] Robert J. Phipps,et al. Access to the meta position of arenes through transition metal catalysed C-H bond functionalisation: a focus on metals other than palladium. , 2018, Chemical Society reviews.
[5] T. Rovis,et al. Complementary Strategies for Directed C(sp3 )-H Functionalization: A Comparison of Transition-Metal-Catalyzed Activation, Hydrogen Atom Transfer, and Carbene/Nitrene Transfer. , 2018, Angewandte Chemie.
[6] Tomislav Rovis,et al. Komplementäre Strategien für die dirigierte C(sp3)‐H‐Funktionalisierung: ein Vergleich von übergangsmetallkatalysierter Aktivierung, Wasserstoffatomtransfer und Carben‐ oder Nitrentransfer , 2018 .
[7] K. Hirano,et al. A lesson for site-selective C–H functionalization on 2-pyridones: radical, organometallic, directing group and steric controls , 2017, Chemical science.
[8] D. Das,et al. A Mild Rhodium Catalyzed Direct Synthesis of Quinolones from Pyridones: Application in the Detection of Nitroaromatics. , 2017, The Journal of organic chemistry.
[9] Sang‐gi Lee,et al. Transition metal-catalyzed site- and regio-divergent C-H bond functionalization. , 2017, Chemical Society reviews.
[10] K. Hirano,et al. Nickel-Catalyzed Directed C6-Selective C-H Alkylation of 2-Pyridones with Dienes and Activated Alkenes. , 2017, The Journal of organic chemistry.
[11] D. Das,et al. Rhodium(III)-Catalyzed C6-Selective Arylation of 2-Pyridones and Related Heterocycles Using Quinone Diazides: Syntheses of Heteroarylated Phenols. , 2017, The Journal of organic chemistry.
[12] K. Hirano,et al. Iridium-Catalyzed Site-Selective C–H Borylation of 2-Pyridones , 2017, Synthesis.
[13] Fen Wang,et al. Transition metal-catalysed couplings between arenes and strained or reactive rings: combination of C-H activation and ring scission. , 2016, Chemical Society reviews.
[14] Hualiang Jiang,et al. Rhodium(III)-Catalyzed Site-Selective C-H Alkylation and Arylation of Pyridones Using Organoboron Reagents. , 2016, Organic letters.
[15] J. Mascareñas,et al. Metal-Catalyzed Annulations through Activation and Cleavage of C-H Bonds. , 2016, Angewandte Chemie.
[16] Moisés Gulías,et al. Metallkatalysierte Anellierungen durch Aktivierung und Spaltung von C‐H‐Bindungen , 2016 .
[17] Jin-Quan Yu,et al. Eine einfache und vielseitige dirigierende Amidgruppe zur Funktionalisierung von C-H-Bindungen , 2016 .
[18] jin-quan yu,et al. A Simple and Versatile Amide Directing Group for C-H Functionalizations. , 2016, Angewandte Chemie.
[19] K. Hirano,et al. Rhodium-Catalyzed C6-Selective C-H Borylation of 2-Pyridones. , 2016, Organic letters.
[20] V. Boyarskiy,et al. Alkenylation of Arenes and Heteroarenes with Alkynes. , 2016, Chemical reviews.
[21] D. Das,et al. C6-Selective Direct Alkylation of Pyridones with Diazo Compounds under Rh(III)-Catalyzed Mild Conditions. , 2016, The Journal of organic chemistry.
[22] Xingwei Li,et al. Formal Gold- and Rhodium-Catalyzed Regiodivergent C-H Alkynylation of 2-Pyridones. , 2016, The Journal of organic chemistry.
[23] K. Hirano,et al. Recent Advances in Copper-mediated Direct Biaryl Coupling , 2015 .
[24] K. Hirano,et al. Copper-mediated C6-selective dehydrogenative heteroarylation of 2-pyridones with 1,3-azoles. , 2014, Angewandte Chemie.
[25] K. Hirano,et al. Manganese-mediated C3-selective direct alkylation and arylation of 2-pyridones with diethyl malonates and arylboronic acids. , 2014, The Journal of organic chemistry.
[26] K. Hirano,et al. Nickel-catalyzed direct alkylation of heterocycles with α-bromo carbonyl compounds: C3-selective functionalization of 2-pyridones. , 2013, Chemistry.
[27] H. McRobbie,et al. Efficacy of cytisine in helping smokers quit: systematic review and meta-analysis , 2013, Thorax.
[28] T. Hanada,et al. Discovery of 2-(2-oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile (perampanel): a novel, noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropanoic acid (AMPA) receptor antagonist. , 2012, Journal of medicinal chemistry.
[29] Junichiro Yamaguchi,et al. Funktionalisierung von C‐H‐Bindungen: neue Synthesemethoden für Naturstoffe und Pharmazeutika , 2012 .
[30] Junichiro Yamaguchi,et al. C-H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. , 2012, Angewandte Chemie.
[31] A. Lei,et al. Bond formations between two nucleophiles: transition metal catalyzed oxidative cross-coupling reactions. , 2011, Chemical reviews.
[32] T. Satoh,et al. Oxidative coupling of aromatic substrates with alkynes and alkenes under rhodium catalysis. , 2010, Chemistry.
[33] Melanie S Sanford,et al. Palladium-catalyzed ligand-directed C-H functionalization reactions. , 2010, Chemical reviews.
[34] L. Ackermann,et al. Übergangsmetallkatalysierte direkte Arylierungen von (Hetero)Arenen durch C‐H‐Bindungsbruch , 2009 .
[35] A. Kapdi,et al. Transition-metal-catalyzed direct arylation of (hetero)arenes by C-H bond cleavage. , 2009, Angewandte Chemie.
[36] F. Kakiuchi,et al. Transition-Metal-CatalyzedCarbon-Carbon Bond Formation via Carbon-HydrogenBond Cleavage , 2008 .
[37] S. Gil,et al. New Synthetic Methods to 2-Pyridone Rings , 2005 .
[38] I. Lagoja. Pyrimidine as Constituent of Natural Biologically Active Compounds , 2005, Chemistry & biodiversity.
[39] K. Hirano,et al. Highly C3-Selective Direct Alkylation and Arylation of 2-Pyridones under Visible-Light-Promoted Photoredox Catalysis , 2016 .