A Property of Polynomials with an Applicationto Siegel’s Lemma
暂无分享,去创建一个
[1] A. Schinzel. A decomposition of integer vectors. IV , 1991 .
[2] C. A. Rogers,et al. An Introduction to the Geometry of Numbers , 1959 .
[3] S. Chaładus. On the densest lattice packing of centrally symmetric octahedra , 1992 .
[4] Jeffrey Lin Thunder,et al. An adelic Minkowski-Hlawka theorem and an application to Siegel's lemma. , 1996 .
[5] J. Vaaler. A geometric inequality with applications to linear forms , 1979 .
[6] Wolfgang M. Schmidt,et al. Diophantine Approximations and Diophantine Equations , 1991 .
[7] J. Whitworth. On the densest packing of sections of a cube (1) , 1948 .
[8] Enrico Bombieri,et al. On Siegel's lemma , 1983 .
[9] D. R. Heath-Brown. Diophantine approximation with square-free numbers , 1984 .
[10] Iskander Aliev,et al. On a decomposition of integer vectors, II. , 2001 .
[11] J. L. Thunder. Asymptotic estimates for rational points of bounded height on flag varieties , 1993 .