A Memristive Chaotic Oscillator With Increasing Amplitude and Frequency

A chaotic oscillator utilizing a flux-controlled memristor to produce a signal that grows in amplitude and frequency over time is introduced in this paper. It was found that the initial condition can be used to change the starting oscillation as well as the amplitude and frequency. From this, a new regime of homogenous multistability was found, where various attractors with different initial conditions are of the same type but have different amplitudes and frequencies.

[1]  Z. Guan,et al.  Chaos-based image encryption algorithm ✩ , 2005 .

[2]  J. Tour,et al.  Electronics: The fourth element , 2008, Nature.

[3]  Julien Clinton Sprott,et al.  Constructing chaotic systems with conditional symmetry , 2017 .

[4]  Julien Clinton Sprott,et al.  Crisis in Amplitude Control Hides in Multistability , 2016, Int. J. Bifurc. Chaos.

[5]  Julien Clinton Sprott,et al.  A New Piecewise Linear Hyperchaotic Circuit , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[6]  Julien Clinton Sprott,et al.  Variable-boostable chaotic flows , 2016 .

[7]  Julien Clinton Sprott,et al.  Infinite Multistability in a Self-Reproducing Chaotic System , 2017, Int. J. Bifurc. Chaos.

[8]  Gang Hu,et al.  Chaos-based secure communications in a large community. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  L. Chua Memristor-The missing circuit element , 1971 .

[10]  C. Chee,et al.  Secure digital communication using controlled projective synchronisation of chaos , 2005 .

[11]  Julien Clinton Sprott,et al.  An infinite 2-D lattice of strange attractors , 2017 .

[12]  Julien Clinton Sprott,et al.  Chaotic flows with a single nonquadratic term , 2014 .

[13]  Leon O. Chua,et al.  Memristor oscillators , 2008, Int. J. Bifurc. Chaos.

[14]  Julien Clinton Sprott,et al.  Hypogenetic chaotic jerk flows , 2016 .

[15]  Sailing He,et al.  A quantitative study on detection and estimation of weak signals by using chaotic Duffing oscillators , 2003 .

[16]  Zhigang Zeng,et al.  Multistability of periodic delayed recurrent neural network with memristors , 2012, Neural Computing and Applications.

[17]  B. Bao,et al.  Multistability in Chua's circuit with two stable node-foci. , 2016, Chaos.

[18]  Jacques M. Bahi,et al.  Theoretical Design and FPGA-Based Implementation of Higher-Dimensional Digital Chaotic Systems , 2015, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Bocheng Bao,et al.  Multiple attractors in a non-ideal active voltage-controlled memristor based Chua's circuit , 2016 .

[20]  Julien Clinton Sprott,et al.  Constructing Chaotic Systems with Total Amplitude Control , 2015, Int. J. Bifurc. Chaos.

[21]  Guangyi Wang,et al.  Extreme multistability in a memristor-based multi-scroll hyper-chaotic system. , 2016, Chaos.

[22]  Jinhu Lu,et al.  On Cryptanalysis of Fridrich's chaotic image encryption scheme , 2016, ArXiv.

[23]  Chen Gang,et al.  A new image encryption algorithm , 2004 .

[24]  Bocheng Bao,et al.  Extreme multistability in a memristive circuit , 2016 .

[25]  Ailong Wu,et al.  Multistability of memristive neural networks with time-varying delays , 2015, Complex..

[26]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[27]  Xing Chen,et al.  The application of chaotic oscillators to weak signal detection , 1999, IEEE Trans. Ind. Electron..

[28]  Julien Clinton Sprott,et al.  Linearization of the Lorenz system , 2015 .