Modeling metabolic networks for mammalian cell systems: general considerations, modeling strategies, and available tools.

Over the past decades, the availability of large amounts of information regarding cellular processes and reaction rates, along with increasing knowledge about the complex mechanisms involved in these processes, has changed the way we approach the understanding of cellular processes. We can no longer rely only on our intuition for interpreting experimental data and evaluating new hypotheses, as the information to analyze is becoming increasingly complex. The paradigm for the analysis of cellular systems has shifted from a focus on individual processes to comprehensive global mathematical descriptions that consider the interactions of metabolic, genomic, and signaling networks. Analysis and simulations are used to test our knowledge by refuting or validating new hypotheses regarding a complex system, which can result in predictive capabilities that lead to better experimental design. Different types of models can be used for this purpose, depending on the type and amount of information available for the specific system. Stoichiometric models are based on the metabolic structure of the system and allow explorations of steady state distributions in the network. Detailed kinetic models provide a description of the dynamics of the system, they involve a large number of reactions with varied kinetic characteristics and require a large number of parameters. Models based on statistical information provide a description of the system without information regarding structure and interactions of the networks involved. The development of detailed models for mammalian cell metabolism has only recently started to grow more strongly, due to the intrinsic complexities of mammalian systems, and the limited availability of experimental information and adequate modeling tools. In this work we review the strategies, tools, current advances, and recent models of mammalian cells, focusing mainly on metabolism, but discussing the methodology applied to other types of networks as well.

[1]  A. Minton,et al.  Macromolecular crowding: biochemical, biophysical, and physiological consequences. , 1993, Annual review of biophysics and biomolecular structure.

[2]  K Gadkar,et al.  The Type 1 Diabetes PhysioLab® Platform: a validated physiologically based mathematical model of pathogenesis in the non‐obese diabetic mouse , 2010, Clinical and experimental immunology.

[3]  I. Birol,et al.  Metabolic control analysis under uncertainty: framework development and case studies. , 2004, Biophysical journal.

[4]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[5]  Zhenjun Hu,et al.  Visant: an Integrative Framework for Networks in Systems Biology , 2008 .

[6]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[7]  F. Kargı,et al.  Bioprocess Engineering: Basic Concepts , 1991 .

[8]  Ryan Nolan,et al.  Dynamic model of CHO cell metabolism. , 2011, Metabolic engineering.

[9]  Pekka Ruusuvuori,et al.  Reconstruction and Validation of RefRec: A Global Model for the Yeast Molecular Interaction Network , 2010, PloS one.

[10]  Rick L. Stevens,et al.  High-throughput generation, optimization and analysis of genome-scale metabolic models , 2010, Nature Biotechnology.

[11]  C T Verrips,et al.  A structured, minimal parameter model of the central nitrogen metabolism in Saccharomyces cerevisiae: the prediction of the behavior of mutants. , 1998, Journal of theoretical biology.

[12]  J. Asenjo,et al.  Viral vectors for the treatment of alcoholism: use of metabolic flux analysis for cell cultivation and vector production. , 2010, Metabolic engineering.

[13]  Masaru Tomita,et al.  E-Cell 2: Multi-platform E-Cell simulation system , 2003, Bioinform..

[14]  D. Kompala,et al.  A structured kinetic modeling framework for the dynamics of hybridoma growth and monoclonal antibody production in continuous suspension cultures , 1989, Biotechnology and bioengineering.

[15]  Stefan Schuster,et al.  Systems biology Metatool 5.0: fast and flexible elementary modes analysis , 2006 .

[16]  Mathieu Cloutier,et al.  The control systems structures of energy metabolism , 2010, Journal of The Royal Society Interface.

[17]  A. D. de Graaf,et al.  Metabolic flux analysis of CHO cells in perfusion culture by metabolite balancing and 2D [13C, 1H] COSY NMR spectroscopy. , 2010, Metabolic engineering.

[18]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[19]  R. Iyengar,et al.  Toward predictive models of mammalian cells. , 2005, Annual review of biophysics and biomolecular structure.

[20]  Dmitrij Frishman,et al.  The MIPS mammalian protein?Cprotein interaction database , 2005, Bioinform..

[21]  Francesco Falciani,et al.  A computational framework for gene regulatory network inference that combines multiple methods and datasets , 2011, BMC Systems Biology.

[22]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[23]  Alexander R. Pico,et al.  GenMAPP 2: new features and resources for pathway analysis , 2007, BMC Bioinformatics.

[24]  An-Ping Zeng,et al.  Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms , 2003, Bioinform..

[25]  Gregory Stephanopoulos,et al.  Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. , 2009, Journal of biotechnology.

[26]  B. Palsson,et al.  Toward Metabolic Phenomics: Analysis of Genomic Data Using Flux Balances , 1999, Biotechnology progress.

[27]  Toshihisa Takagi,et al.  PRIME: automatically extracted PRotein Interactions and Molecular Information databas , 2004, Silico Biol..

[28]  Gonzalo R. Ordóñez,et al.  The Degradome database: mammalian proteases and diseases of proteolysis , 2008, Nucleic Acids Res..

[29]  Norman W. Paton,et al.  SBRML: a markup language for associating systems biology data with models , 2010, Bioinform..

[30]  Björn H. Junker,et al.  Computational Models of Metabolism: Stability and Regulation in Metabolic Networks , 2008 .

[31]  Y. Schneider,et al.  Metabolic design of macroscopic bioreaction models: application to Chinese hamster ovary cells , 2006, Bioprocess and biosystems engineering.

[32]  I. Karimi,et al.  Elucidation of metabolism in hybridoma cells grown in fed‐batch culture by genome‐scale modeling , 2009, Biotechnology and bioengineering.

[33]  Grace Jordison Molecular Biology of the Gene , 1965, The Yale Journal of Biology and Medicine.

[34]  Hiroaki Kitano,et al.  Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. , 2003, Omics : a journal of integrative biology.

[35]  Kyungsook Han,et al.  PSIbase: a database of Protein Structural Interactome map (PSIMAP) , 2005, Bioinform..

[36]  C. Schilling,et al.  Flux coupling analysis of genome-scale metabolic network reconstructions. , 2004, Genome research.

[37]  Steffen Klamt,et al.  Structural and functional analysis of cellular networks with CellNetAnalyzer , 2007, BMC Systems Biology.

[38]  Attila Csikász-Nagy,et al.  Analysis of a generic model of eukaryotic cell-cycle regulation. , 2006, Biophysical journal.

[39]  Bernhard O. Palsson,et al.  Dynamic simulation of the human red blood cell metabolic network , 2001, Bioinform..

[40]  P. Karp,et al.  Computational prediction of human metabolic pathways from the complete human genome , 2004, Genome Biology.

[41]  E. Pistikopoulos,et al.  Modeling Amino Acid Metabolism in Mammalian Cells‐Toward the Development of a Model Library , 2007, Biotechnology progress.

[42]  Rui Alves,et al.  Tools for kinetic modeling of biochemical networks , 2006, Nature Biotechnology.

[43]  Emmanuel Barillot,et al.  Regulatory network reconstruction using an integral additive model with flexible kernel functions , 2008, BMC Systems Biology.

[44]  M A Savageau,et al.  Accuracy of alternative representations for integrated biochemical systems. , 1987, Biochemistry.

[45]  G Stephanopoulos,et al.  Metabolic flux analysis of hybridoma continuous culture steady state multiplicity. , 1999, Biotechnology and bioengineering.

[46]  Adam J. Smith,et al.  The Database of Interacting Proteins: 2004 update , 2004, Nucleic Acids Res..

[47]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[48]  Z. Gerdtzen,et al.  Comparative metabolic analysis of lactate for CHO cells in glucose and galactose , 2011 .

[49]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[50]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2009 update , 2009, Nucleic Acids Res..

[51]  Miguel Rocha,et al.  OptFlux: an open-source software platform for in silico metabolic engineering , 2010, BMC Systems Biology.

[52]  Hugh D. Spence,et al.  Minimum information requested in the annotation of biochemical models (MIRIAM) , 2005, Nature Biotechnology.

[53]  J. Tramper,et al.  Flux Analysis of Mammalian Cell Culture , 2010 .

[54]  Benjamin A. Shoemaker,et al.  Inferred Biomolecular Interaction Server—a web server to analyze and predict protein interacting partners and binding sites , 2009, Nucleic Acids Res..

[55]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[56]  Ronan M. T. Fleming,et al.  Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism. , 2010, Journal of theoretical biology.

[57]  Jianying Gao,et al.  Dynamic Metabolic Modeling for a MAB Bioprocess , 2007, Biotechnology progress.

[58]  S. P. Asprey,et al.  Modelling of Mammalian Cells and Cell Culture Processes , 2004, Cytotechnology.

[59]  Albert-László Barabási,et al.  Systems biology. Life's complexity pyramid. , 2002, Science.

[60]  B. Palsson,et al.  Identifying constraints that govern cell behavior: a key to converting conceptual to computational models in biology? , 2003, Biotechnology and bioengineering.

[61]  B. Palsson,et al.  Towards multidimensional genome annotation , 2006, Nature Reviews Genetics.

[62]  J. Keasling,et al.  A Dynamic Model of theEscherichia coliPhosphate-Starvation Response , 1998 .

[63]  Andreas Wagner,et al.  The Systems Biology Research Tool: evolvable open-source software , 2008, BMC Systems Biology.

[64]  A. Valencia,et al.  A gene network for navigating the literature , 2004, Nature Genetics.

[65]  G. Stephanopoulos,et al.  Intracellular flux analysis in hybridomas using mass balances and in vitro 13C nmr , 1995, Biotechnology and bioengineering.

[66]  Geoff Barton,et al.  Optimisation of animal cell culture media using dynamic simulation , 1995 .

[67]  Bruce E. Shapiro,et al.  Cellerator: extending a computer algebra system to include biochemical arrows for signal transduction simulations , 2003, Bioinform..

[68]  Christoph Wittmann,et al.  Theoretical aspects of 13C metabolic flux analysis with sole quantification of carbon dioxide labeling , 2005, Comput. Biol. Chem..

[69]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[70]  G. Stephanopoulos,et al.  Metabolic Engineering: Principles And Methodologies , 1998 .

[71]  Jan Schellenberger,et al.  Use of Randomized Sampling for Analysis of Metabolic Networks* , 2009, Journal of Biological Chemistry.

[72]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[73]  Lealon L. Martin,et al.  On the dynamic modeling of mammalian cell metabolism and mAb production , 2010, Comput. Chem. Eng..

[74]  Nicholas A. Hamilton,et al.  LOCATE: a mammalian protein subcellular localization database , 2007, Nucleic Acids Res..

[75]  Georges Bastin,et al.  Dynamic metabolic modelling under the balanced growth condition , 2004 .

[76]  J. Keasling,et al.  Effect of Polyphosphate Metabolism on the Escherichia coli Phosphate‐Starvation Response , 1999, Biotechnology progress.

[77]  M. Perrier,et al.  293SF Metabolic Flux Analysis during Cell Growth and Infection with an Adenoviral Vector , 2000, Biotechnology progress.

[78]  Jesús Picó,et al.  A procedure for the estimation over time of metabolic fluxes in scenarios where measurements are uncertain and/or insufficient , 2007, BMC Bioinformatics.

[79]  P. G. Sørensen,et al.  Biosimulation of drug metabolism--a yeast based model. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[80]  Nikolay A. Kolchanov,et al.  GeneNet database: description and modeling of gene networks , 2002, Silico Biol..

[81]  C. Zupke Metabolic flux analysis in mammalian cell culture , 1993 .

[82]  Peter D. Karp,et al.  The MetaCyc Database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases , 2007, Nucleic Acids Res..

[83]  Peter D. Karp,et al.  The Pathway Tools software , 2002, ISMB.

[84]  Timothy M. D. Ebbels,et al.  Statistical Techniques in Metabolic Profiling , 2008 .

[85]  G. Stephanopoulos,et al.  Metabolic flux analysis: a powerful tool for monitoring tissue function. , 1999, Tissue engineering.

[86]  C. Ouzounis,et al.  Expansion of the BioCyc collection of pathway/genome databases to 160 genomes , 2005, Nucleic acids research.

[87]  Robert Urbanczik SNA – a toolbox for the stoichiometric analysis of metabolic networks , 2005, BMC Bioinformatics.

[88]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[89]  Dong-Yup Lee,et al.  Genome-scale modeling and in silico analysis of mouse cell metabolic network. , 2009, Molecular bioSystems.

[90]  J. Heijnen Approximative kinetic formats used in metabolic network modeling , 2005, Biotechnology and bioengineering.

[91]  George Karypis,et al.  Data clustering in life sciences , 2005, Molecular biotechnology.

[92]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[93]  Shashi Shekhar,et al.  Statistical Techniques , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[94]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[95]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[96]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[97]  Sang Yup Lee,et al.  WebCell: a web-based environment for kinetic modeling and dynamic simulation of cellular networks , 2006, Bioinform..

[98]  Shankar Subramaniam,et al.  The Molecule Pages database , 2002, Nature.

[99]  Allen P. Minton,et al.  Cell biology: Join the crowd , 2003, Nature.

[100]  Rui Oliveira,et al.  Hybrid metabolic flux analysis: combining stoichiometric and statistical constraints to model the formation of complex recombinant products , 2011, BMC Systems Biology.

[101]  Carlos Prieto,et al.  APID: Agile Protein Interaction DataAnalyzer , 2006, Nucleic Acids Res..

[102]  M. Reuss,et al.  In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. , 1997, Biotechnology and bioengineering.

[103]  John P. Barford,et al.  An unstructured kinetic model of macromolecular metabolism in batch and fed-batch cultures of hybridoma cells producing monoclonal antibody , 2000 .

[104]  A. Wouwer,et al.  A detailed metabolic flux analysis of an underdetermined network of CHO cells. , 2010, Journal of biotechnology.

[105]  H. Woo,et al.  Resources for systems biology research , 2006 .

[106]  Damian Szklarczyk,et al.  The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored , 2010, Nucleic Acids Res..

[107]  Li Chen,et al.  Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets , 2007, Journal of Biosciences.

[108]  Antje Chang,et al.  BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009 , 2008, Nucleic Acids Res..

[109]  Hao Zhu,et al.  Grid Cellware: the first grid-enabled tool for modelling and simulating cellular processes , 2005, Bioinform..

[110]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010 .

[111]  Randall C Willis,et al.  Searching, viewing, and visualizing data in the Biomolecular Interaction Network Database (BIND). , 2006, Current protocols in bioinformatics.

[112]  Jia Jia,et al.  Update of KDBI: Kinetic Data of Bio-molecular Interaction database , 2008, Nucleic Acids Res..

[113]  Andrzej M. Kierzek,et al.  STOCKS: STOChastic Kinetic Simulations of biochemical systems with Gillespie algorithm , 2002, Bioinform..

[114]  Michael Hecker,et al.  Integrated network reconstruction, visualization and analysis using YANAsquare , 2007, BMC Bioinformatics.

[115]  Colin N. Dewey,et al.  Initial sequencing and comparative analysis of the mouse genome. , 2002 .

[116]  J C Schaff,et al.  Virtual Cell modelling and simulation software environment. , 2008, IET systems biology.

[117]  N. Kikuchi,et al.  CellDesigner 3.5: A Versatile Modeling Tool for Biochemical Networks , 2008, Proceedings of the IEEE.

[118]  Neelanjana Sengupta,et al.  Metabolic flux analysis of CHO cell metabolism in the late non‐growth phase , 2011, Biotechnology and bioengineering.

[119]  Aurélien Naldi,et al.  Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle , 2006, ISMB.

[120]  Nicolas Le Novère,et al.  BioModels.net Web Services, a free and integrated toolkit for computational modelling software , 2010, Briefings Bioinform..

[121]  Wolfgang Wiechert,et al.  Modeling and simulation: tools for metabolic engineering. , 2002, Journal of biotechnology.

[122]  Upinder S. Bhalla,et al.  The Database of Quantitative Cellular Signaling: management and analysis of chemical kinetic models of signaling networks , 2003, Bioinform..

[123]  Falk Schreiber,et al.  Analysis of Biological Networks , 2008 .

[124]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[125]  Russ B. Altman,et al.  Research Paper: Using Petri Net Tools to Study Properties and Dynamics of Biological Systems , 2004, J. Am. Medical Informatics Assoc..

[126]  F. Gòdia,et al.  Considerations on the lactate consumption by CHO cells in the presence of galactose. , 2006, Journal of biotechnology.

[127]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[128]  Igor Jurisica,et al.  Online Predicted Human Interaction Database , 2005, Bioinform..

[129]  B. Palsson,et al.  Genome-scale models of microbial cells: evaluating the consequences of constraints , 2004, Nature Reviews Microbiology.

[130]  Karthik Raman,et al.  A Systems Biology Tool for Flux Analysis of Metabolic Pathways , 2008 .

[131]  Ioannis Xenarios,et al.  DIP: The Database of Interacting Proteins: 2001 update , 2001, Nucleic Acids Res..

[132]  Byungkyu Brian Park,et al.  HPID: The Human Protein Interaction Database , 2004, Bioinform..

[133]  B. Palsson,et al.  Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. , 2003, Genome research.

[134]  L. Nielsen,et al.  Modeling Hybridoma Cell Metabolism Using a Generic Genome‐Scale Metabolic Model of Mus musculus , 2008, Biotechnology progress.

[135]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2011 update , 2010, Nucleic Acids Res..

[136]  M. Antoniewicz,et al.  Metabolic flux analysis of CHO cells at growth and non-growth phases using isotopic tracers and mass spectrometry. , 2011, Metabolic engineering.

[137]  Jungoh Ahn,et al.  Genome-scale metabolic reconstruction and in silico analysis of methylotrophic yeast Pichia pastoris for strain improvement , 2010, Microbial cell factories.

[138]  T. Schäfer,et al.  Modelling hybridoma cell growth and metabolism--a comparison of selected models and data. , 1996, Journal of biotechnology.

[139]  L. Reed,et al.  Regulation of mammalian pyruvate dehydrogenase complex by a phosphorylation-dephosphorylation cycle. , 1981, Current topics in cellular regulation.

[140]  D. I. Wang,et al.  Material balance studies on animal cell metabolism using a stoichiometrically based reaction network , 2000, Biotechnology and bioengineering.

[141]  Yukiko Matsuoka,et al.  Using process diagrams for the graphical representation of biological networks , 2005, Nature Biotechnology.

[142]  Edda Klipp,et al.  Systems Biology , 1994 .

[143]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[144]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[145]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[146]  Daniel I. C. Wang,et al.  Energy metabolism and ATP balance in animal cell cultivation using a stoichiometrically based reaction network , 2000, Biotechnology and bioengineering.

[147]  L. Hood Systems biology: integrating technology, biology, and computation , 2003, Mechanisms of Ageing and Development.

[148]  Ka Yee Yeung,et al.  Principal component analysis for clustering gene expression data , 2001, Bioinform..

[149]  Albert-László Barabási,et al.  Life's Complexity Pyramid , 2002, Science.

[150]  Luigi Mariani,et al.  Growth and production modeling in hybridoma continuous cultures , 1993, Biotechnology and bioengineering.

[151]  M. Perrier,et al.  Metabolic flux analysis of HEK-293 cells in perfusion cultures for the production of adenoviral vectors. , 2005, Metabolic engineering.