280 GHz Focal Plane Unit Design and Characterization for the Spider-2 Suborbital Polarimeter

We describe the construction and characterization of the 280 GHz bolometric focal plane units (FPUs) to be deployed on the second flight of the balloon-borne Spider instrument. These FPUs are vital to Spider’s primary science goal of detecting or placing an upper limit on the amplitude of the primordial gravitational wave signature in the cosmic microwave background (CMB) by constraining the B-mode contamination in the CMB from Galactic dust emission. Each 280 GHz focal plane contains a $$16 \times 16$$16×16 grid of corrugated silicon feedhorns coupled to an array of aluminum–manganese transition-edge sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the three 280 GHz FPUs contain 1530 polarization-sensitive bolometers (765 spatial pixels) optimized for the low loading environment in flight and read out by time-division SQUID multiplexing. In this paper, we describe the mechanical, thermal, and magnetic shielding architecture of the focal planes and present cryogenic measurements which characterize yield and the uniformity of several bolometer parameters. The assembled FPUs have high yields, with one array as high as 95% including defects from wiring and readout. We demonstrate high uniformity in device parameters, finding the median saturation power for each TES array to be $$\sim $$∼3 pW at 300 mK with a less than 6% variation across each array at $$1\sigma $$1σ. These focal planes will be deployed alongside the 95 and 150 GHz telescopes in the Spider-2 instrument, slated to fly from McMurdo Station in Antarctica in December 2018.

J. P. Filippini | M. Halpern | G. Hilton | V. V. Hristov | C. L. Kuo | C. B. Netterfield | J. E. Ruhl | A. D. Turner | D. V. Wiebe | S. J. Benton | K. D. Irwin | J. R. Bond | M. Nolta | J. J. Bock | M. C. Runyan | C. R. Contaldi | L. M. Fissel | A. E. Gambrel | N. N. Gandilo | J. E. Gudmundsson | M. Hasselfield | W. C. Jones | Z. D. Kermish | P. V. Mason | T. A. Morford | J. M. Nagy | A. S. Rahlin | J. A. Shariff | J. D. Soler | A. Trangsrud | R. S. Tucker | E. Y. Young | J. Hubmayr | D. T. Becker | A. S. Bergman | S. M. Duff | R. Gualtieri | B. Osherson | I. L. Padilla | S. Redmond | L. J. Romualdez | C. Shiu | M. Farhang | H. K. Eriksen | A. Khan | K. Ganga | I. K. Wehus | A. C. Weber | H. C. Chiang | J. A. Beall | K. Megerian | J. Van Lanen | L. Moncelsi | W. Holmes | M. Nolta | M. Halpern | V. Hristov | C. Netterfield | J. Bond | C. Contaldi | K. Ganga | J. Ruhl | G. Hilton | K. Irwin | C. Kuo | A. Rahlin | H. Eriksen | H. Chiang | A. Fraisse | I. Wehus | J. Gudmundsson | M. Farhang | Z. Huang | P. Mason | A. Weber | A. Duivenvoorden | R. Gualtieri | W. Jones | A. Khan | A. Turner | J. Beall | Z. Kermish | L. Fissel | J. Hubmayr | M. Hasselfield | L. Moncelsi | D. Wiebe | S. Benton | J. Filippini | J. Soler | X. Song | B. Racine | M. Vissers | D. Becker | S. Duff | S. Bryan | A. Trangsrud | Masoud Amiri | E. Young | O. Dore | P. Ade | A. A. Fraisse | Z. Huang | B. Racine | C. Shiu | J. Austermann | K. Megerian | A. Gambrel | I. Padilla | J. Nagy | M. R. Vissers | S. A. Bryan | A. J. Duivenvoorden | M. Galloway | S. Li | T. M. Ruud | X. Song | M. Runyan | P. A. R. Ade | S. Akers | M. Amiri | J. A. Austermann | R. S Domagalski | O. Doré | K. Freese | A. Grigorian | J. Hartley | C. Reintsema | E. C. Shaw | C. Tucker | J. Ullom | J. F. van der List | S. Wen | M. Galloway | W. Holmes | R. Domagalski | J. Shariff | N. Gandilo | J. van Lanen | B. Osherson | S. Redmond | T. Morford | R. Tucker | A. Bergman | S. Li | C. Reintsema | S. Wen | J. Bock | C. Tucker | J. Hartley | S. Akers | J. Ullom | K. Freese | A. Grigorian | P. Mason

[1]  A. G. Vieregg,et al.  Bicep2. II. EXPERIMENT AND THREE-YEAR DATA SET , 2014, 1403.4302.

[2]  A. G. Vieregg,et al.  ANTENNA-COUPLED TES BOLOMETERS USED IN BICEP2, Keck Array, AND SPIDER , 2015, 1502.00619.

[3]  P. A. R. Ade,et al.  A New Limit on CMB Circular Polarization from SPIDER , 2017, 1704.00215.

[4]  Kent D. Irwin,et al.  Superconducting transition edge sensor using dilute AlMn alloys , 2004 .

[5]  P. A. R. Ade,et al.  The thermal design, characterization, and performance of the Spider long-duration balloon cryostat , 2015, 1506.06953.

[6]  P. A. R. Ade,et al.  Spider OPTIMIZATION. II. OPTICAL, MAGNETIC, AND FOREGROUND EFFECTS , 2011, 1102.0559.

[7]  G. Hilton,et al.  Time-division superconducting quantum interference device multiplexer for transition-edge sensors , 2003 .

[8]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[9]  J. E. Carlstrom,et al.  Optical efficiency of feedhorn-coupled TES polarimeters for next-generation CMB instruments , 2010, Astronomical Telescopes + Instrumentation.

[10]  R. W. Ogburn,et al.  Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band. , 2016, Physical review letters.

[11]  C. B. Netterfield,et al.  Design of 280 GHz feedhorn-coupled TES arrays for the balloon-borne polarimeter SPIDER , 2016, Astronomical Telescopes + Instrumentation.

[12]  S. R. Golwala,et al.  SPIDER: a balloon-borne large-scale CMB polarimeter , 2008, Astronomical Telescopes + Instrumentation.

[13]  A. G. Vieregg,et al.  BICEP2 / Keck Array VI: Improved Constraints On Cosmology and Foregrounds When Adding 95 GHz Data From Keck Array , 2015, 1510.09217.

[14]  P. A. R. Ade,et al.  SPIDER: Probing the Early Universe with a Suborbital Polarimeter , 2011, 1106.3087.

[15]  G. W. Pratt,et al.  Planck 2015 results - X. Diffuse component separation: Foreground maps , 2015, 1502.01588.

[16]  Shannon M. Duff,et al.  Advanced ACTPol Multichroic Polarimeter Array Fabrication Process for 150 mm Wafers , 2016 .

[17]  G. Hilton,et al.  Time-Division SQUID Multiplexers With Reduced Sensitivity to External Magnetic Fields , 2010, IEEE Transactions on Applied Superconductivity.

[18]  P. A. R. Ade,et al.  Pre-flight integration and characterization of the SPIDER balloon-borne telescope , 2014, Astronomical Telescopes and Instrumentation.

[19]  P. A. R. Ade,et al.  Design and performance of the SPIDER instrument , 2010, Astronomical Telescopes + Instrumentation.

[20]  Ki Won Yoon,et al.  Planar Orthomode Transducers for Feedhorn‐coupled TES Polarimeters , 2009 .

[21]  J. J. Bock,et al.  SPIDER: a balloon-borne CMB polarimeter for large angular scales , 2010, Astronomical Telescopes + Instrumentation.