Solving parametric polynomial systems

We present a new algorithm for solving basic parametric constructible or semi-algebraic systems of the form C={x@?C^n,p"1(x)=0,...,p"s(x)=0,f"1(x) 0,...,f"l(x) 0} or S={x@?R^n,p"1(x)=0,...,p"s(x)=0,f"1(x)>0,...,f"l(x)>0}, where p"i,f"i@?Q[U,X], U=[U"1,...,U"d] is the set of parameters and X=[X"d"+"1,...,X"n] the set of unknowns. If @P"U denotes the canonical projection onto the parameter's space, solving C or S is reduced to the computation of submanifolds U@?C^d or U@?R^d such that (@P"U^-^1(U)@?C,@P"U) is an analytic covering of U (we say that U has the (@P"U,C)-covering property). This guarantees that the cardinality of @P"U^-^1(u)@?C is constant on a neighborhood of u, that @P"U^-^1(U)@?C is a finite collection of sheets and that @P"U is a local diffeomorphism from each of these sheets onto U. We show that the complement in @P"U(C)@? (the closure of @P"U(C) for the usual topology of C^n) of the union of all the open subsets of @P"U(C)@? which have the (@P"U,C)-covering property is a Zariski closed set which is called the minimal discriminant variety ofCw.r.t.@P"U, denoted as W"D. We propose an algorithm to compute W"D efficiently. The variety W"D can then be used to solve the parametric system C (resp. S) as long as one can describe @P"U(C)@?@?W"D (resp. R^d@?(@P"U(C)@?@?W"D)). This can be done by using the critical points method or an ''open'' cylindrical algebraic decomposition.

[1]  Fabrice Rouillier On the Rational Univariate Representation , 2004 .

[2]  Dima Grigoriev,et al.  Bounds on numers of vectors of multiplicities for polynomials which are easy to compute , 2000, ISSAC.

[3]  Dongming Wang,et al.  Elimination Methods , 2001, Texts and Monographs in Symbolic Computation.

[4]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[5]  Philippe Trébuchet Vers une résolution stable et rapide des équations algébriques , 2002 .

[6]  V. Weispfenning Solving Parametric Polynomial Equations And Inequalities By Symbolic Algorithms , 1995 .

[7]  Jean Charles Faugère,et al.  A new efficient algorithm for computing Gröbner bases without reduction to zero (F5) , 2002, ISSAC '02.

[8]  Antonio Montes,et al.  Improving the DISPGB algorithm using the discriminant ideal , 2006, J. Symb. Comput..

[9]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[10]  Solen Corvez Etude de systèmes polynomiaux : contributions à la classification d'une famille de manipulateurs et au calcul des intersections de courbes A - splines : par Solen Corvez , 2005 .

[11]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[12]  Volker Weispfenning,et al.  Canonical comprehensive Gröbner bases , 2002, ISSAC '02.

[13]  Daniel Lazard,et al.  Injectivity of real rational mappings: the case of a mixture of two Gaussian laws , 2004, Math. Comput. Simul..

[14]  Daniel Lazard Computing with parameterized varieties , 2006, Algebraic Geometry and Geometric Modeling.

[15]  Éric Schost,et al.  Polar varieties and computation of one point in each connected component of a smooth real algebraic set , 2003, ISSAC '03.

[16]  Volker Weispfenning,et al.  Comprehensive Gröbner Bases , 1992, J. Symb. Comput..

[17]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[18]  D. Eisenbud,et al.  Direct methods for primary decomposition , 1992 .

[19]  Fabrice Rouillier,et al.  Real Solving for Positive Dimensional Systems , 2002, J. Symb. Comput..

[20]  Daniel Lazard,et al.  ON THE SPECIFICATION FOR SOLVERS OF POLYNOMIAL SYSTEMS , 2001 .

[21]  Guillaume Moroz,et al.  Complexity of the resolution of parametric systems of polynomial equations and inequations , 2006, ISSAC '06.

[22]  J. Risler,et al.  Real algebraic and semi-algebraic sets , 1990 .

[23]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[24]  Fabrice Rouillier,et al.  Solving Zero-Dimensional Systems Through the Rational Univariate Representation , 1999, Applicable Algebra in Engineering, Communication and Computing.

[25]  D. Mumford The red book of varieties and schemes , 1988 .

[26]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[27]  T. Willmore Algebraic Geometry , 1973, Nature.

[28]  Solen Corvez,et al.  Using Computer Algebra Tools to Classify Serial Manipulators , 2002, Automated Deduction in Geometry.

[29]  Éric Schost,et al.  Properness Defects of Projections and Computation of at Least One Point in Each Connected Component of a Real Algebraic Set , 2004, Discret. Comput. Geom..

[30]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[31]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[32]  Zhenbing Zeng,et al.  EQUI-CEVALINE POINTS OF TRIANGLES , 2000 .

[33]  佐藤 洋祐,et al.  特集 Comprehensive Grobner Bases , 2007 .

[34]  Éric Schost,et al.  Computing Parametric Geometric Resolutions , 2003, Applicable Algebra in Engineering, Communication and Computing.