A possible mechanism for magnetar soft X-ray/γ-ray emission

Once the energies of electrons near the Fermi surface obviously exceed the threshold energy of the inverse beta decay, electron capture (EC) dominates inside the magnetar. Since the maximal binding energy of the P-3(2) neutron Cooper pair is only about 0.048 MeV, the outgoing high-energy neutrons (E-k(n) > 60 MeV) created by the EC can easily destroy the P-3(2) neutron Cooper pairs through the interaction of nuclear force. In the anisotropic neutron superfluid, each P-3(2) neutron Cooper pair has magnetic energy 2 mu B-n in the applied magnetic field B, where mu(n) = 0.966 x 10(-23) erg(.)G(-1) is the absolute value of the neutron abnormal magnetic moment. While being destroyed by the high-energy EC neutrons, the magnetic moments of the P-3(2) Cooper pairs are no longer arranged in the paramagnetic direction, and the magnetic energy is released. This released energy can be transformed into thermal energy. Only a small fraction of the generated thermal energy is transported from the interior to the surface by conduction, and then it is radiated in the form of thermal photons from the surface. After highly efficient modulation within the star's magnetosphere, the thermal surface emission is shaped into a spectrum of soft X-ray/gamma-rays with the observed characteristics of magnetars. By introducing related parameters, we calculate the theoretical luminosities of magnetars. The calculation results agree well with the observed parameters of magnetars.

[1]  杨学军,et al.  Hawking effect and quantum nonthermal radiation of an arbitrarily accelerating charged black hole using a new tortoise coordinate transformation , 2011 .

[2]  J. Yuan,et al.  Evolution of superhigh magnetic fields of magnetars , 2011, 1312.2728.

[3]  J. Yuan,et al.  Numerical simulation of the electron capture process in a magnetar interior , 2011, 1312.2733.

[4]  C. Kouveliotou,et al.  A Low-Magnetic-Field Soft Gamma Repeater , 2010, Science.

[5]  R. Xu,et al.  NON-DETECTION IN A FERMI/LAT OBSERVATION OF AXP 4U 0142+61: MAGNETARS? , 2010, 1009.3620.

[6]  R. Xu,et al.  Resonant cyclotron scattering in pulsar magnetospheres and its application to isolated neutron stars , 2009, 0906.4223.

[7]  University College London,et al.  X-ray spectra from magnetar candidates – I. Monte Carlo simulations in the non-relativistic regime , 2008, 0802.2647.

[8]  M. Erkut,et al.  On the X-Ray Light Curve, Pulsed-Radio Emission, and Spin Frequency Evolution of the Transient Anomalous X-Ray Pulsar XTE J1810–197 during Its X-Ray Outburst , 2007, 0710.1201.

[9]  Q. Peng,et al.  The physics of strong magnetic fields in neutron stars , 2007, 0706.0060.

[10]  B. Link,et al.  Evidence for heating of neutron stars by magnetic-field decay. , 2006, Physical review letters.

[11]  C. Thompson,et al.  Corona of Magnetars , 2006, astro-ph/0602417.

[12]  Q. Peng,et al.  Collapse Velocity and Prompt Explosion for the Presupernova Model Ws15M , 2006 .

[13]  M. Alpar,et al.  X-Ray and Infrared Enhancement of Anomalous X-Ray Pulsar 1E 2259+586 , 2005, astro-ph/0511783.

[14]  Ubc,et al.  Resonant cyclotron scattering and Comptonization in neutron star magnetospheres , 2005, astro-ph/0507557.

[15]  R. Becker,et al.  Discovery of Radio Emission From Transient Anomalous X-Ray Pulsar XTE J1810-197 , 2005, astro-ph/0508534.

[16]  UK.,et al.  Submitted to The Astrophysical Journal on 29/1/2005 A XMM-Newton View of the Soft Gamma-ray Repeater SGR 1806–20: Long Term Variability in the pre-Super Giant Flare Epoch , 2005 .

[17]  A. Rau,et al.  An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts , 2005, Nature.

[18]  C. Thompson,et al.  High-Energy Emission from Magnetars , 2004, astro-ph/0408538.

[19]  T. Oosterbroek,et al.  Pronounced Long-Term Flux Variability of the Anomalous X-Ray Pulsar 1E 1048.1–5937 , 2004, astro-ph/0404193.

[20]  C. Bailyn,et al.  Imaging X-Ray, Optical, and Infrared Observations of the Transient Anomalous X-Ray Pulsar XTE J1810–197 , 2003, astro-ph/0309745.

[21]  Milano,et al.  Pulse Phase Variations of the X-Ray Spectral Features in the Radio-quiet Neutron Star 1E 1207–5209 , 2002, astro-ph/0207296.

[22]  S. R. Kulkarni,et al.  Electrodynamics of Magnetars: Implications for the Persistent X-Ray Emission and Spin-down of the Soft Gamma Repeaters and Anomalous X-Ray Pulsars , 2001, astro-ph/0110677.

[23]  M. Alpar On Young Neutron Stars as Propellers and Accretors with Conventional Magnetic Fields , 2000, astro-ph/0005211.

[24]  K. Langanke,et al.  Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range in supernovae environments , 2000, nucl-th/0001018.

[25]  C. Kouveliotou,et al.  Physical Mechanisms for the Variable Spin-down and Light Curve of SGR 1900+14 , 1999, astro-ph/9908086.

[26]  J. Heyl,et al.  Powering Anomalous X-Ray Pulsars by Neutron Star Cooling , 1997, astro-ph/9708179.

[27]  L. Angelini,et al.  The Nature of the “6 Second” and Related X-Ray Pulsars: Evolutionary and Dynamical Considerations , 1997 .

[28]  Christopher Thompson,et al.  The Soft Gamma Repeaters as Very Strongly Magnetized Neutron Stars. II. Quiescent Neutrino, X-Ray, and Alfvén Wave Emission , 1996 .

[29]  Hjorth-Jensen,et al.  Superfluidity in beta -Stable Neutron Star Matter. , 1996, Physical review letters.

[30]  M. Hjorth-Jensen,et al.  Triplet pairing of neutrons in β-stable neutron star matter , 1996, nucl-th/9604032.

[31]  C. Schaab,et al.  Thermal Evolution of Compact Stars , 1996, astro-ph/9603142.

[32]  C. Thompson,et al.  The soft gamma repeaters as very strongly magnetized neutron stars - I. Radiative mechanism for outbursts , 1995 .

[33]  R. Taam,et al.  On the nature of the 'anomalous' 6-s X-ray pulsars , 1995 .

[34]  S. Kulkarni,et al.  Characteristics of the persistent emission of SGR 1806-20 , 1994 .

[35]  L. Stella,et al.  THE DISCOVERY OF 8.7 SECOND PULSATIONS FROM THE ULTRASOFT X-RAY SOURCE 4U 0142+61 , 1994, astro-ph/9407092.

[36]  S. Kulkarni,et al.  X-ray identification of the soft γ-ray repeater 1806 – 20 , 1994, Nature.

[37]  Christopher Thompson,et al.  Formation of very strongly magnetized neutron stars - Implications for gamma-ray bursts , 1992 .

[38]  P. Charles,et al.  A 6 second periodic X-ray source in Carina , 1986 .

[39]  F. Marshall,et al.  The unusually soft X-ray spectrum of LMC X-3 , 1984 .

[40]  Saul A. Teukolsky,et al.  Black Holes, White Dwarfs, and Neutron Stars , 1983 .

[41]  D. Lamb,et al.  Effects of neutrino degeneracy in supernova models , 1976 .

[42]  T. Mazurek Pauli constriction of the low-energy window in neutrino supernova models , 1976 .

[43]  L. Cooper,et al.  Theory of superconductivity , 1957 .