Control curves and knot insertion for trigonometric splines

We introduce control curves for trigonometric splines and show that they have properties similar to those for classical polynomial splines. In particular, we discuss knot insertion algorithms, and show that as more and more knots are inserted into a trigonometric spline, the associated control curves converge to the spline. In addition, we establish a convex-hull property and a variation-diminishing result.

[1]  T. Lyche Discrete B-Splines and Conversion Problems , 1990 .

[2]  Wolfgang Dahmen,et al.  Subdivision algorithms converge quadratically , 1986 .

[3]  S. L. Lee,et al.  Interpolatory and variation-diminishing properties of generalized B-splines , 1984, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[5]  Elaine COHEN,et al.  Rates of convergence of control polygons , 1985, Comput. Aided Geom. Des..

[6]  Marian Neamtu,et al.  Non-polynomial polar forms , 1994 .

[7]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[8]  Larry L. Schumaker,et al.  On recursions for generalized splines , 1982 .

[9]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[10]  Larry L. Schumaker,et al.  Bernstein-Bézier polynomials on spheres and sphere-like surfaces , 1996, Comput. Aided Geom. Des..

[11]  T. Lyche,et al.  BOUNDS FOR THE ERROR IN TRIGONOMETRIC HERMITE INTERPOLATION , 1980 .

[12]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[13]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[14]  R. Riesenfeld,et al.  A geometric proof for the variation diminishing property of B-spline approximation , 1983 .

[15]  T. Lyche,et al.  A stable recurrence relation for trigonometric B-splines , 1979 .

[16]  Tom Lyche,et al.  L-Spline Wavelets , 1994 .

[17]  Larry L. Schumaker On hyperbolic splines , 1983 .