Missing data

[1]  D. Rubin,et al.  Fully conditional specification in multivariate imputation , 2006 .

[2]  John L.P. Thompson,et al.  Missing data , 2004, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[3]  P. Royston Multiple Imputation of Missing Values , 2004 .

[4]  Russell V. Lenth,et al.  Statistical Analysis With Missing Data (2nd ed.) (Book) , 2004 .

[5]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[6]  P. Allison Missing data techniques for structural equation modeling. , 2003, Journal of abnormal psychology.

[7]  Nicholas J. Horton,et al.  A Potential for Bias When Rounding in Multiple Imputation , 2003 .

[8]  G. King,et al.  Analyzing Incomplete Political Science Data: An Alternative Algorithm for Multiple Imputation , 2001, American Political Science Review.

[9]  John Van Hoewyk,et al.  A multivariate technique for multiply imputing missing values using a sequence of regression models , 2001 .

[10]  David E. Booth,et al.  Analysis of Incomplete Multivariate Data , 2000, Technometrics.

[11]  J. Robins,et al.  Inference for imputation estimators , 2000 .

[12]  P. Allison Multiple Imputation for Missing Data , 2000 .

[13]  S. van Buuren,et al.  Multivariate Imputation by Chained Equations : Mice V1.0 User's manual , 2000 .

[14]  Peter J. Diggle,et al.  Adjusting for Nonignorable Drop-Out Using Semiparametric Nonresponse Models: Comment , 1999 .

[15]  D. Rubin,et al.  Small-sample degrees of freedom with multiple imputation , 1999 .

[16]  J.P.L. Brand,et al.  Development, Implementation and Evaluation of Multiple Imputation Strategies for the Statistical Analysis of Incomplete Data Sets , 1999 .

[17]  K. Land,et al.  An Empirical Evaluation of the Predictive Mean Matching Method for Imputing Missing Values , 1997 .

[18]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[19]  D P MacKinnon,et al.  Maximizing the Usefulness of Data Obtained with Planned Missing Value Patterns: An Application of Maximum Likelihood Procedures. , 1996, Multivariate behavioral research.

[20]  Michael P. Jones Indicator and stratification methods for missing explanatory variables in multiple linear regression , 1996 .

[21]  James L. Arbuckle,et al.  Full Information Estimation in the Presence of Incomplete Data , 1996 .

[22]  J. Robins,et al.  Analysis of semiparametric regression models for repeated outcomes in the presence of missing data , 1995 .

[23]  J. Robins,et al.  Semiparametric Efficiency in Multivariate Regression Models with Missing Data , 1995 .

[24]  G. Arminger,et al.  Specification and Estimation of Mean- and Covariance-Structure Models , 1995 .

[25]  Xiao-Li Meng,et al.  Multiple-Imputation Inferences with Uncongenial Sources of Input , 1994 .

[26]  Christopher Winship,et al.  Sampling Weights and Regression Analysis , 1994 .

[27]  Roderick J. A. Little,et al.  A Class of Pattern-Mixture Models for Normal Incomplete Data , 1994 .

[28]  R. Little Pattern-Mixture Models for Multivariate Incomplete Data , 1993 .

[29]  R. Little Regression with Missing X's: A Review , 2011 .

[30]  W Vach,et al.  Biased estimation of the odds ratio in case-control studies due to the use of ad hoc methods of correcting for missing values for confounding variables. , 1991, American journal of epidemiology.

[31]  Donald B. Rubin,et al.  Significance levels from repeated p-values with multiply imputed data , 1991 .

[32]  R. Craik,et al.  The effects of persistent depressive symptoms on hip fracture recovery. , 1990, Journal of gerontology.

[33]  N M Laird,et al.  Missing data in longitudinal studies. , 1988, Statistics in medicine.

[34]  Bengt Muthén,et al.  On structural equation modeling with data that are not missing completely at random , 1987 .

[35]  P. Allison Estimation of Linear Models with Incomplete Data , 1987 .

[36]  R. Little,et al.  Editing and Imputation for Quantitative Survey Data , 1987 .

[37]  T. Dijkstra,et al.  Least-squares theory based on general distributional assumptions with an application to the incomplete observations problem , 1985 .

[38]  C. Fuchs Maximum Likelihood Estimation and Model Selection in Contingency Tables with Missing Data , 1982 .

[39]  Alain Monfort,et al.  On the Problem of Missing Data in Linear Models , 1981 .

[40]  Donald B. Rubin,et al.  Maximum-Likelihood Estimation in Panel Studies with Missing Data , 1980 .

[41]  J. Heckman Sample selection bias as a specification error , 1979 .

[42]  A. Agresti,et al.  Statistical Methods for the Social Sciences , 1979 .

[43]  Jae-On Kim,et al.  The Treatment of Missing Data in Multivariate Analysis , 1977 .

[44]  J. Heckman The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models , 1976 .

[45]  Jacob Cohen,et al.  Applied multiple regression/correlation analysis for the behavioral sciences , 1979 .

[46]  E. Beale,et al.  Missing Values in Multivariate Analysis , 1975 .

[47]  D. Rubin INFERENCE AND MISSING DATA , 1975 .

[48]  Y. Morrison presented at the Annual Meeting of the , 1970 .

[49]  Y. Haitovsky Missing Data in Regression Analysis , 1968 .

[50]  M. Glasser,et al.  Linear Regression Analysis with Missing Observations among the Independent Variables , 1964 .