Distinct mechanisms of form-from-motion perception in human extrastriate cortex

The exquisite sensitivity of the human visual system to form-from-motion (FfM) cues is well documented. However, identifying the neural correlates of this sensitivity has proven difficult, particularly determining the respective contributions of different motion areas in extrastriate visual cortex. Here we measured visual FfM perception and more elementary visual motion (VM) perception in a group of 32 patients suffering from acute posterior brain damage, and performed MRI-based lesion analysis. Our results suggest that severe FfM perception deficits without an associated deficit of VM perception are due to damage to ventral occipito-temporal cortex (VOT), whereas associated deficits of FfM and VM perception are due to damage either in proximity to area MT+/V5 or an area including lateral occipital complex (LOC) and VOT. These data suggest the existence of at least three functionally and anatomically distinct regions in human visual cortex that process FfM signals.

[1]  S. Zeki,et al.  The architecture of the colour centre in the human visual brain: new results and a review * , 2000, The European journal of neuroscience.

[2]  G. Orban,et al.  The kinetic occipital (KO) region in man: an fMRI study. , 1997, Cerebral cortex.

[3]  T. Schenk,et al.  Visual motion perception after brain damage: II. Deficits in form-from-motion perception , 1997, Neuropsychologia.

[4]  G. Orban,et al.  The kinetic occipital region in human visual cortex. , 1997, Cerebral cortex.

[5]  T Mergner,et al.  Visual short-term memory of stimulus velocity in patients with unilateral posterior brain damage , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  O. Blanke,et al.  Direction‐selective motion blindness after unilateral posterior brain damage , 2003, The European journal of neuroscience.

[7]  A. Cowey,et al.  Blindness to form from motion despite intact static form perception and motion detection , 2000, Neuropsychologia.

[8]  G. Orban,et al.  Many areas in the human brain respond to visual motion. , 1994, Journal of neurophysiology.

[9]  M. Meng,et al.  Relationship between ventral stream for object vision and dorsal stream for spatial vision: An fMRI+ERP study , 1999, Human brain mapping.

[10]  R. Tootell,et al.  Anatomical evidence for MT and additional cortical visual areas in humans. , 1995, Cerebral cortex.

[11]  L. Vaina Selective impairment of visual motion interpretation following lesions of the right occipito-parietal area in humans , 1989, Biological Cybernetics.

[12]  P E Roland,et al.  Visual form discrimination from color or motion cues: functional anatomy by positron emission tomography. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Walter H. Ehrenstein,et al.  A computer-assisted test for the electrophysiological and psychophysical measurement of dynamic visual function based on motion contrast , 1998, Journal of Neuroscience Methods.

[14]  S. Zeki,et al.  The cerebral activity related to the visual perception of forward motion in depth. , 1994, Brain : a journal of neurology.

[15]  V. Vaclavik,et al.  Dog phobia in a motion-blind patient , 2003, Cognitive neuropsychiatry.

[16]  J. Pokorny Foundations of Cyclopean Perception , 1972 .

[17]  N. Mai,et al.  Selective disturbance of movement vision after bilateral brain damage. , 1983, Brain : a journal of neurology.

[18]  K. Nakayama,et al.  Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: A case study , 1990, Visual Neuroscience.

[19]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[20]  W. Singer,et al.  The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery , 1998, The European journal of neuroscience.

[21]  B. Julesz Foundations of Cyclopean Perception , 1971 .

[22]  Alan C. Evans,et al.  A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. , 2000, Cerebral cortex.

[23]  A. Cowey,et al.  Regional cerebral correlates of global motion perception: evidence from unilateral cerebral brain damage. , 2001, Brain : a journal of neurology.

[24]  P. McLeod,et al.  Preserved and Impaired Detection of Structure From Motion by a 'Motion-blind" Patient , 1996 .

[25]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[26]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[27]  D. Regan,et al.  Visual processing of motion-defined form: selective failure in patients with parietotemporal lesions , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  Lucia M Vaina,et al.  Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Allison B. Sekuler,et al.  Motion segregation from speed differences: Evidence for nonlinear processing , 1990, Vision Research.

[30]  T. Schenk,et al.  Visual motion perception after brain damage: I. Deficits in global motion perception , 1997, Neuropsychologia.

[31]  J. Sharpe,et al.  Retinotopic and directional defects in motion discrimination in humans with cerebral lesions , 1995, Annals of neurology.

[32]  Roberto Cipolla,et al.  Structure from motion , 2008 .

[33]  Ron Kikinis,et al.  Deficits of motion integration and segregation in patients with unilateral extrastriate lesions. , 2005, Brain : a journal of neurology.

[34]  Tutis Vilis,et al.  The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. , 2003, Cerebral cortex.

[35]  S. Zeki,et al.  The processing of kinetic contours in the brain. , 2003, Cerebral cortex.

[36]  K. Grill-Spector,et al.  The human visual cortex. , 2004, Annual review of neuroscience.

[37]  T Landis,et al.  Direction‐specific motion blindness induced by focal stimulation of human extrastriate cortex , 2002, The European journal of neuroscience.