Restructuring of genomic provinces of surface ocean plankton under climate change

The impact of climate change on diversity, functioning and biogeography of marine plankton is a major unresolved scientific issue. Here, niche theory is applied on plankton metagenomes sampled during the Tara Oceans expedition to derive pan-ocean geographical structuring in climato-genomic provinces characterized by signature genomes for 6 size fractions, from viruses to meso-zooplankton. Assuming a high warming scenario (RCP8.5), the identified tropical provinces would expand and temperate provinces would shrink. Poleward shifts are projected for 96% of provinces in five major basins leading to their reorganization over ~50% of the surface ocean south of 60°N, of which 3% correspond to novel assemblages of provinces. Sea surface temperature is identified as the main driver and accounts only for ~51 % of the changes followed by phosphate (11%) and salinity (10.3%). These results demonstrate the potential of integration of genomics with physico-chemical data for higher scale modeling and understanding of ocean ecosystems.

[1]  Tom O. Delmont,et al.  Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean , 2021, The ISME Journal.

[2]  Tom O. Delmont,et al.  Functional repertoire convergence of distantly related eukaryotic plankton lineages revealed by genome-resolved metagenomics , 2020, bioRxiv.

[3]  F. d’Ovidio,et al.  Large scale patterns of marine diatom richness: Drivers and trends in a changing ocean , 2020 .

[4]  P. Wincker,et al.  Investigating population‐scale allelic differential expression in wild populations of Oithona similis (Cyclopoida, Claus, 1866) , 2020, Ecology and evolution.

[5]  A. Tagliabue,et al.  Quantifying the Impact of Climate Change on Marine Diazotrophy: Insights From Earth System Models , 2020, Frontiers in Marine Science.

[6]  Brandon M. Greenwell,et al.  Generalized Boosted Regression Models [R package gbm version 2.1.8] , 2020 .

[7]  D. Capone,et al.  Changing perspectives in marine nitrogen fixation , 2020, Science.

[8]  G. Cochrane,et al.  Tara Oceans: towards global ocean ecosystems biology , 2020, Nature Reviews Microbiology.

[9]  D. Iudicone Some may like it hot , 2020 .

[10]  A. Martiny,et al.  Global picophytoplankton niche partitioning predicts overall positive response to ocean warming , 2020, Nature Geoscience.

[11]  F. Chavez,et al.  Environmental DNA reveals seasonal shifts and potential interactions in a marine community , 2020, Nature Communications.

[12]  S. Sunagawa,et al.  Expanding Tara Oceans Protocols for Underway, Ecosystemic Sampling of the Ocean-Atmosphere Interface During Tara Pacific Expedition (2016–2018) , 2019, Front. Mar. Sci..

[13]  Tom O. Delmont,et al.  Genomic evidence for global ocean plankton biogeography shaped by large-scale current systems , 2019, bioRxiv.

[14]  Ronald R. Coifman,et al.  Visualizing structure and transitions in high-dimensional biological data , 2019, Nature Biotechnology.

[15]  Catalina A. Vallejos,et al.  Exploring a world of a thousand dimensions , 2019, Nature Biotechnology.

[16]  Luis Pedro Coelho,et al.  Gene Expression Changes and Community Turnover Differentially Shape the Global Ocean Metatranscriptome , 2019, Cell.

[17]  Luis Pedro Coelho,et al.  Global Trends in Marine Plankton Diversity across Kingdoms of Life , 2019, Cell.

[18]  Tom O. Delmont,et al.  Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade , 2019, eLife.

[19]  M. Follows,et al.  Dimensions of marine phytoplankton diversity , 2019, Biogeosciences.

[20]  E. Pelletier,et al.  Meta-Omics Reveals Genetic Flexibility of Diatom Nitrogen Transporters in Response to Environmental Changes , 2019, Molecular biology and evolution.

[21]  J. Cloern,et al.  Prediction of unprecedented biological shifts in the global ocean , 2019, Nature Climate Change.

[22]  Maxime M. Grand,et al.  Developing Autonomous Observing Systems for Micronutrient Trace Metals , 2019, Front. Mar. Sci..

[23]  T. Richardson Mechanisms and Pathways of Small-Phytoplankton Export from the Surface Ocean. , 2019, Annual review of marine science.

[24]  David van Dijk,et al.  Visualizing Structure and Transitions for Biological Data Exploration , 2017, bioRxiv.

[25]  Przemyslaw Biecek,et al.  DALEX: explainers for complex predictive models , 2018, ArXiv.

[26]  Tom O. Delmont,et al.  Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes , 2018, Nature Microbiology.

[27]  F. Benedetti,et al.  Investigating uncertainties in zooplankton composition shifts under climate change scenarios in the Mediterranean Sea , 2018 .

[28]  Przemyslaw Biecek,et al.  DALEX: explainers for complex predictive models , 2018, J. Mach. Learn. Res..

[29]  P. Bork,et al.  A global ocean atlas of eukaryotic genes , 2018, Nature Communications.

[30]  Francisco M. Cornejo-Castillo,et al.  Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition , 2017, Scientific Data.

[31]  C. Bowler,et al.  The Implications of Eco-Evolutionary Processes for the Emergence of Marine Plankton Community Biogeography , 2017, The American Naturalist.

[32]  R. Watson A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014 , 2017, Scientific Data.

[33]  Ronald de Wolf,et al.  Optimal Quantum Sample Complexity of Learning Algorithms , 2016, CCC.

[34]  M. Gehlen,et al.  Influence of diatom diversity on the ocean biological carbon pump , 2017, Nature Geoscience.

[35]  Stefan Engelen,et al.  de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer , 2016, bioRxiv.

[36]  S. Doney,et al.  Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation , 2016 .

[37]  M. Payne,et al.  The predictive skill of species distribution models for plankton in a changing climate , 2016, Global change biology.

[38]  A. D. Barton,et al.  Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities , 2016, Proceedings of the National Academy of Sciences.

[39]  Luis Pedro Coelho,et al.  Plankton networks driving carbon export in the oligotrophic ocean , 2015, Nature.

[40]  S. Guikema,et al.  Multidecadal increase in North Atlantic coccolithophores and the potential role of rising CO2 , 2015, Science.

[41]  T. Guilderson,et al.  Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean , 2015, Science.

[42]  Olivier Aumont,et al.  PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies , 2015 .

[43]  Peer Bork,et al.  Open science resources for the discovery and analysis of Tara Oceans data , 2015, Scientific Data.

[44]  M. Cugmas,et al.  On comparing partitions , 2015 .

[45]  William W. L. Cheung,et al.  Multi-model ensemble projections of climate change effects on global marine biodiversity , 2015 .

[46]  C. Duarte,et al.  Seafaring in the 21St Century: The Malaspina 2010 Circumnavigation Expedition , 2015 .

[47]  Neil D. Fredrick,et al.  Biogeographic patterns in ocean microbes emerge in a neutral agent-based model , 2014, Science.

[48]  G. McKinley,et al.  Global open-ocean biomes: mean and temporal variability , 2014 .

[49]  K. Lindsay,et al.  North‐South asymmetry in the modeled phytoplankton community response to climate change over the 21st century , 2013 .

[50]  Gabriel Reygondeau,et al.  Dynamic biogeochemical provinces in the global ocean , 2013 .

[51]  C. Janeway,et al.  Pillars article: approaching the asymptote? Evolution and revolution in immunology. Cold spring harb symp quant biol. 1989. 54: 1-13. , 2013, Journal of immunology.

[52]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[53]  Michael J. Fogarty,et al.  Marine Taxa Track Local Climate Velocities , 2013, Science.

[54]  K. Arrigo,et al.  Processes and patterns of oceanic nutrient limitation , 2013 .

[55]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[56]  A. Kirkevåg,et al.  The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate , 2013 .

[57]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[58]  Timothy P. Boyer,et al.  World Ocean Database 2013. , 2013 .

[59]  Krista,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part II: Carbon System Formulation and Baseline Simulation Characteristics* , 2013 .

[60]  Elena Litchman,et al.  A Global Pattern of Thermal Adaptation in Marine Phytoplankton , 2012, Science.

[61]  L. A. Anderson,et al.  Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates , 2012 .

[62]  Daniel H. Buckley,et al.  A Comprehensive Evaluation of PCR Primers to Amplify the nifH Gene of Nitrogenase , 2012, PloS one.

[63]  Ronald,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics , 2012 .

[64]  Richard Sanders,et al.  Global patterns in efficiency of particulate organic carbon export and transfer to the deep ocean , 2012 .

[65]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[66]  P. Bork,et al.  A Holistic Approach to Marine Eco-Systems Biology , 2011, PLoS biology.

[67]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[68]  John P. Dunne,et al.  Projected expansion of the subtropical biome and contraction of the temperate and equatorial upwelling biomes in the North Pacific under global warming , 2011 .

[69]  Scott C. Doney,et al.  Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity , 2010 .

[70]  Paul-Antoine Michelangeli,et al.  Probabilistic downscaling approaches: Application to wind cumulative distribution functions , 2009 .

[71]  Grégory Beaugrand,et al.  Decadal changes in climate and ecosystems in the North Atlantic Ocean and adjacent seas , 2009 .

[72]  Paul J. Somerfield,et al.  Identification of the Bray-Curtis similarity index: Comment on Yoshioka (2008) , 2008 .

[73]  A. Richardson In hot water: zooplankton and climate change , 2008 .

[74]  Antonio Criminisi,et al.  Object Class Segmentation using Random Forests , 2008, BMVC.

[75]  P. Mahadevan,et al.  An overview , 2007, Journal of Biosciences.

[76]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[77]  Tom Fawcett,et al.  An introduction to ROC analysis , 2006, Pattern Recognit. Lett..

[78]  Olivier Aumont,et al.  Response of diatoms distribution to global warming and potential implications: A global model study , 2005 .

[79]  G. Danabasoglu,et al.  The Community Climate System Model Version 4 , 2011 .

[80]  S. Wood Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models , 2004 .

[81]  J. Steele The ocean ‘landscape’ , 1989, Landscape Ecology.

[82]  Brian D. Ripley,et al.  Modern Applied Statistics with S Fourth edition , 2002 .

[83]  Walker O. Smith,et al.  Temperature effects on export production in the open ocean , 2000 .

[84]  J. Randerson,et al.  Primary production of the biosphere: integrating terrestrial and oceanic components , 1998, Science.

[85]  A. Longhurst Ecological Geography of the Sea , 1998 .

[86]  B. Ripley,et al.  Modern Applied Statistics with S-Plus. , 1996 .

[87]  A. Orsi,et al.  On the meridional extent and fronts of the Antarctic Circumpolar Current , 1995 .

[88]  M. A. Saab Day-to-day variation in phytoplankton assemblages during spring blooming in a fixed station along the Lebanese coastline , 1992 .

[89]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[90]  Peter J. Rousseeuw,et al.  Clustering by means of medoids , 1987 .

[91]  J. G. Field,et al.  The Ecological Role of Water-Column Microbes in the Sea* , 1983 .

[92]  Sa Bloom,et al.  Similarity Indices in Community Studies: Potential Pitfalls , 1981 .

[93]  B. Peterson,et al.  Particulate organic matter flux and planktonic new production in the deep ocean , 1979, Nature.

[94]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[95]  B. L. Welch The generalisation of student's problems when several different population variances are involved. , 1947, Biometrika.

[96]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[97]  Student,et al.  THE PROBABLE ERROR OF A MEAN , 1908 .

[98]  Paul Jaccard,et al.  Distribution comparée de la flore alpine dans quelques régions des Alpes occidentales et orientales , 1902 .