Protein Secretion and Membrane Insertion Systems in Gram-Negative Bacteria

In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.

[1]  S. Hultgren,et al.  Assembly of complex organelles: pilus biogenesis in gram-negative bacteria as a model system. , 2000, Methods.

[2]  V. Koronakis TolC – the bacterial exit duct for proteins and drugs , 2003, FEBS letters.

[3]  R. Lister,et al.  Protein import into mitochondria: origins and functions today (Review) , 2005, Molecular membrane biology.

[4]  M. Saier Evolution of bacterial type III protein secretion systems. , 2004, Trends in microbiology.

[5]  K. Cline,et al.  Efficient Twin Arginine Translocation (Tat) Pathway Transport of a Precursor Protein Covalently Anchored to Its Initial cpTatC Binding Site* , 2006, Journal of Biological Chemistry.

[6]  Kumaran S Ramamurthi,et al.  Yersinia yopQ mRNA encodes a bipartite type III secretion signal in the first 15 codons , 2003, Molecular microbiology.

[7]  L. Axelsson,et al.  The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706 , 1995, Journal of bacteriology.

[8]  R. Waller,et al.  The Omp85 family of proteins is essential for outer membrane biogenesis in mitochondria and bacteria , 2004, The Journal of cell biology.

[9]  B. Finlay,et al.  Insertion of the bacterial type III translocon: not your average needle stick. , 2005, Trends in microbiology.

[10]  W. Löffelhardt,et al.  Homologous protein import machineries in chloroplasts and cyanelles. , 2005, The Plant journal : for cell and molecular biology.

[11]  M. Saier,et al.  The Transporter Classification (TC) System, 2002 , 2002, Critical reviews in biochemistry and molecular biology.

[12]  M. Hecker,et al.  TatC Is a Specificity Determinant for Protein Secretion via the Twin-arginine Translocation Pathway* , 2000, The Journal of Biological Chemistry.

[13]  Matthias Müller,et al.  Twin-arginine-specific protein export in Escherichia coli. , 2005, Research in microbiology.

[14]  M. Hecker,et al.  Functional genomic analysis of the Bacillus subtilis Tat pathway for protein secretion. , 2002, Journal of biotechnology.

[15]  B. Berks,et al.  Pathfinders and trailblazers: a prokaryotic targeting system for transport of folded proteins. , 2006, FEMS microbiology letters.

[16]  E. Bokma,et al.  Structure of the periplasmic component of a bacterial drug efflux pump. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[17]  G. Georgiou,et al.  Positive Selection for Loss-of-Function tat Mutations Identifies Critical Residues Required for TatA Activity , 2005, Journal of bacteriology.

[18]  J. Broome-Smith,et al.  Transport of molecules across microbial membranes , 1999 .

[19]  N. Pfanner,et al.  An Essential Role of Sam50 in the Protein Sorting and Assembly Machinery of the Mitochondrial Outer Membrane* , 2003, Journal of Biological Chemistry.

[20]  M H Saier,et al.  Phylogenetic analyses of the constituents of Type III protein secretion systems. , 2000, Journal of molecular microbiology and biotechnology.

[21]  P. Roholl,et al.  The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane , 2003, The EMBO journal.

[22]  H. Saibil,et al.  Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[23]  M. Saier,et al.  Structural and evolutionary relationships between two families of bacterial extracytoplasmic chaperone proteins which function cooperatively in fimbrial assembly. , 1993, Research in microbiology.

[24]  G. Chang,et al.  Lipopolysaccharide stabilizes the crystal packing of the ABC transporter MsbA. , 2005, Acta crystallographica. Section F, Structural biology and crystallization communications.

[25]  K. Linton,et al.  The ATP switch model for ABC transporters , 2004, Nature Structural &Molecular Biology.

[26]  M. Saier,et al.  Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. , 2003, Microbiology.

[27]  S. C. Winans,et al.  Adaptation of a conjugal transfer system for the export of pathogenic macromolecules. , 1996, Trends in microbiology.

[28]  Yufeng Zhai,et al.  A web-based Tree View (TV) program for the visualization of phylogenetic trees. , 2002, Journal of molecular microbiology and biotechnology.

[29]  G. von Heijne,et al.  Biogenesis of inner membrane proteins in Escherichia coli. , 2005, Annual review of microbiology.

[30]  K. Bunai,et al.  Protein Traffic for Secretion and Related Machinery of Bacillus subtilis , 2004, Bioscience, biotechnology, and biochemistry.

[31]  M. van der Laan,et al.  YidC--an evolutionary conserved device for the assembly of energy-transducing membrane protein complexes. , 2005, Current opinion in microbiology.

[32]  J. Fak,et al.  Phospholipid-induced Monomerization and Signal-peptide-induced Oligomerization of SecA* , 2003, The Journal of Biological Chemistry.

[33]  M H Saier,et al.  Phylogenetic and structural analyses of the oxa1 family of protein translocases. , 2001, FEMS microbiology letters.

[34]  N. Grishin,et al.  Sec61beta--a component of the archaeal protein secretory system. , 2002, Trends in biochemical sciences.

[35]  K. Ramamurthi,et al.  Substrate recognition by the Yersinia type III protein secretion machinery , 2003, Molecular microbiology.

[36]  J. Weiner,et al.  Investigation of Escherichia coli Dimethyl Sulfoxide Reductase Assembly and Processing in Strains Defective for the sec-Independent Protein Translocation System Membrane Targeting and Translocation* , 2001, The Journal of Biological Chemistry.

[37]  A. Bolhuis,et al.  The core TatABC complex of the twin-arginine translocase in Escherichia coli: TatC drives assembly whereas TatA is essential for stability. , 2005, Journal of molecular biology.

[38]  R. Benz,et al.  The haemolysin‐secreting ShlB protein of the outer membrane of Serratia marcescens : determination of surface‐exposed residues and formation of ion‐permeable pores by ShlB mutants in artificial lipid bilayer membranes , 1999, Molecular microbiology.

[39]  E. Willery,et al.  Lack of functional complementation between Bordetella pertussis filamentous hemagglutinin and Proteus mirabilis HpmA hemolysin secretion machineries , 1997, Journal of bacteriology.

[40]  H. Wolf‐Watz,et al.  The YopD Translocator of Yersinia pseudotuberculosis Is a Multifunctional Protein Comprised of Discrete Domains , 2004, Journal of bacteriology.

[41]  J. Weiner,et al.  Multiple Roles for the Twin Arginine Leader Sequence of Dimethyl Sulfoxide Reductase of Escherichia coli* , 2000, The Journal of Biological Chemistry.

[42]  A. Economou Bacterial secretome: the assembly manual and operating instructions (Review) , 2002, Molecular membrane biology.

[43]  M. Sandkvist Biology of type II secretion , 2001, Molecular microbiology.

[44]  G. Cornelis The Yersinia Ysc–Yop 'Type III' weaponry , 2002, Nature Reviews Molecular Cell Biology.

[45]  Lutz Schmitt,et al.  Type 1 protein secretion in bacteria, the ABC-transporter dependent pathway (Review) , 2005, Molecular membrane biology.

[46]  A. Engel,et al.  Structural Insights into the Secretin PulD and Its Trypsin-resistant Core* , 2005, Journal of Biological Chemistry.

[47]  B. Berks,et al.  Sec-independent Protein Translocation in Escherichia coli , 1999, The Journal of Biological Chemistry.

[48]  Daniel Kahne,et al.  Identification of a Multicomponent Complex Required for Outer Membrane Biogenesis in Escherichia coli , 2005, Cell.

[49]  S. Wolf,et al.  Exploring cargo transport mechanics in the type IV secretion systems. , 2005, Trends in microbiology.

[50]  A. Driessen,et al.  The oligomeric distribution of SecYEG is altered by SecA and translocation ligands. , 2005, Journal of molecular biology.

[51]  C. Locht,et al.  Two‐partner secretion in Gram‐negative bacteria: a thrifty, specific pathway for large virulence proteins , 2001, Molecular microbiology.

[52]  K. Watabe,et al.  Identification of a region required for binding to presecretory protein in Bacillus subtilis Ffh, a homologue of the 54-kDa subunit of mammalian signal recognition particle. , 1997, European journal of biochemistry.

[53]  Michael Küchler,et al.  Characterization of the translocon of the outer envelope of chloroplasts , 2003, The Journal of cell biology.

[54]  J. Derrick,et al.  Analysis of the PilQ Secretin from Neisseria meningitidis by Transmission Electron Microscopy Reveals a Dodecameric Quaternary Structure , 2001, Journal of bacteriology.

[55]  Hiroyoshi Matsumura,et al.  The Crystal Structure of the Outer Membrane Protein VceC from the Bacterial Pathogen Vibrio cholerae at 1.8 Å Resolution* , 2005, Journal of Biological Chemistry.

[56]  D Peter Tieleman,et al.  Conformational Transitions Induced by the Binding of MgATP to the Vitamin B12 ATP-binding Cassette (ABC) Transporter BtuCD* , 2004, Journal of Biological Chemistry.

[57]  G. Venema,et al.  The genes for secretion and maturation of lactococcins are located on the chromosome of Lactococcus lactis IL1403 , 1996, Applied and environmental microbiology.

[58]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[59]  John F. Hunt,et al.  Crystal Structures of the BtuF Periplasmic-binding Protein for Vitamin B12 Suggest a Functionally Important Reduction in Protein Mobility upon Ligand Binding* , 2003, The Journal of Biological Chemistry.

[60]  Yufeng Zhai,et al.  Protein-translocating outer membrane porins of Gram-negative bacteria. , 2002, Biochimica et biophysica acta.

[61]  Douglas C. Rees,et al.  The E. coli BtuCD Structure: A Framework for ABC Transporter Architecture and Mechanism , 2002, Science.

[62]  J. Tommassen,et al.  Role of a Highly Conserved Bacterial Protein in Outer Membrane Protein Assembly , 2003, Science.

[63]  J. de Gier,et al.  Biogenesis of inner membrane proteins in Escherichia coli , 2001, Molecular microbiology.

[64]  Transport of proteins into and across the thylakoid membrane. , 2000, Journal of experimental botany.

[65]  Matthias Müller,et al.  The Tat pathway in bacteria and chloroplasts (Review) , 2005, Molecular membrane biology.

[66]  M. Saier,et al.  Protein secretion systems of Pseudomonas aeruginosa and P fluorescens. , 2003, Biochimica et biophysica acta.

[67]  Frank Sargent,et al.  Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. , 2005, Current opinion in microbiology.

[68]  E. Ramanculov,et al.  Genetic analysis of the T4 holin: timing and topology. , 2001, Gene.

[69]  T. Lithgow,et al.  Molecular architecture and function of the Omp85 family of proteins , 2005, Molecular microbiology.

[70]  L. Schmitt,et al.  Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: identification of a variable region within ABC helical domains. , 2003, Journal of molecular biology.

[71]  R. Young Bacteriophage holins: deadly diversity. , 2002, Journal of molecular microbiology and biotechnology.

[72]  M. Saier,et al.  Membrane‐fusion protein homologues in Gram‐positive bacteria , 2000, Molecular microbiology.

[73]  M. Kleerebezem,et al.  Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation , 1997, Journal of bacteriology.

[74]  G. Cornelis,et al.  The bacterial injection kit: Type III secretion systems , 2005, Annals of medicine.

[75]  S. Lybarger,et al.  A Hitchhiker's Guide to Type IV Secretion , 2004, Science.

[76]  M H Saier,et al.  Conjugal type IV macromolecular transfer systems of Gram-negative bacteria: organismal distribution, structural constraints and evolutionary conclusions. , 2001, Microbiology.

[77]  C. Raetz,et al.  Loss of Outer Membrane Proteins without Inhibition of Lipid Export in an Escherichia coli YaeT Mutant* , 2005, Journal of Biological Chemistry.

[78]  A. Filloux The underlying mechanisms of type II protein secretion. , 2004, Biochimica et biophysica acta.

[79]  B. Berks,et al.  An Essential Component of a Novel Bacterial Protein Export System with Homologues in Plastids and Mitochondria* , 1998, The Journal of Biological Chemistry.

[80]  E. Cascales,et al.  Structural and dynamic properties of bacterial Type IV secretion systems (Review) , 2005, Molecular membrane biology.

[81]  S. Cory,et al.  The Bcl-2 protein family: arbiters of cell survival. , 1998, Science.

[82]  Wolfgang Busch,et al.  Two Families of Mechanosensitive Channel Proteins , 2003, Microbiology and Molecular Biology Reviews.

[83]  Koreaki Ito SecY and integral membrane components of the Escherichia coli protein translocation system , 1992, Molecular microbiology.

[84]  M H Saier,et al.  Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria , 1993, Microbiological reviews.

[85]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[86]  M. Hensel,et al.  Salmonella pathogenicity islands encoding type III secretion systems. , 2001, Microbes and infection.

[87]  M H Saier,et al.  A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of gram-negative bacteria , 1994, Journal of bacteriology.

[88]  Frank Sargent,et al.  The Tat protein translocation pathway and its role in microbial physiology. , 2003, Advances in microbial physiology.

[89]  T. Rapoport,et al.  Membrane-protein integration and the role of the translocation channel. , 2004, Trends in cell biology.

[90]  Matthias Müller,et al.  Protein traffic in bacteria: multiple routes from the ribosome to and across the membrane. , 2001, Progress in nucleic acid research and molecular biology.

[91]  B. Oudega,et al.  Molecular and structural aspects of fimbriae biosynthesis and assembly in Escherichia coli. , 1996, FEMS microbiology reviews.

[92]  B. Schönfisch,et al.  Machinery for protein sorting and assembly in the mitochondrial outer membrane , 2003, Nature.

[93]  M H Saier,et al.  Computer-based analyses of the protein constituents of transport systems catalysing export of complex carbohydrates in bacteria. , 1997, Microbiology.

[94]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[95]  E. Nester,et al.  Agrobacterium type IV secretion is a two‐step process in which export substrates associate with the virulence protein VirJ in the periplasm , 2002, Molecular microbiology.

[96]  C. B. Roth,et al.  Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. , 2001, Science.

[97]  T. Becker,et al.  The Evolutionarily Related β-Barrel Polypeptide Transporters from Pisum sativum and Nostoc PCC7120 Contain Two Distinct Functional Domains* , 2005, Journal of Biological Chemistry.

[98]  A. Pugsley,et al.  Towards the Identification of Type II Secretion Signals in a Nonacylated Variant of Pullulanase from Klebsiella oxytoca , 2005, Journal of bacteriology.

[99]  Colin Hughes,et al.  Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export , 2000, Nature.

[100]  E. Willery,et al.  Channel Formation by FhaC, the Outer Membrane Protein Involved in the Secretion of the Bordetella pertussis Filamentous Hemagglutinin* , 1999, The Journal of Biological Chemistry.

[101]  H. Betz,et al.  The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules. , 2004, Journal of molecular biology.

[102]  M. Crompton,et al.  Mitochondrial intermembrane junctional complexes and their involvement in cell death. , 2002, Biochimie.

[103]  D. Newman,et al.  Extracellular respiration of dimethyl sulfoxide by Shewanella oneidensis strain MR-1. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[104]  J. Galán,et al.  Salmonella type III secretion‐associated chaperones confer secretion‐pathway specificity , 2004, Molecular microbiology.

[105]  J. Tommassen,et al.  Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[106]  M H Saier,et al.  A functional‐phylogenetic system for the classification of transport proteins , 1999, Journal of cellular biochemistry.

[107]  T. Samuelsson,et al.  YidC/Oxa1p/Alb3: evolutionarily conserved mediators of membrane protein assembly , 2001, FEBS letters.

[108]  L. Burrows Weapons of mass retraction , 2005, Molecular microbiology.

[109]  G. Phillips,et al.  Versatility of inner membrane protein biogenesis in Escherichia coli , 2003, Molecular microbiology.

[110]  J. Eswaran,et al.  Structure and function of TolC: the bacterial exit duct for proteins and drugs. , 2004, Annual review of biochemistry.

[111]  Frank Sargent,et al.  Export of complex cofactor-containing proteins by the bacterial Tat pathway. , 2005, Trends in microbiology.

[112]  K. Cline,et al.  Oligomers of Tha4 Organize at the Thylakoid Tat Translocase during Protein Transport* , 2006, Journal of Biological Chemistry.

[113]  Michelle B. Ryndak,et al.  Role of Predicted Transmembrane Domains for Type III Translocation, Pore Formation, and Signaling by the Yersinia pseudotuberculosis YopB Protein , 2005, Infection and Immunity.

[114]  D. Dubnau,et al.  DNA uptake in bacteria. , 1999, Annual review of microbiology.

[115]  T A Rapoport,et al.  Protein transport across the eukaryotic endoplasmic reticulum and bacterial inner membranes. , 1996, Annual review of biochemistry.

[116]  G. Schoolnik,et al.  Structure-Function Analysis of BfpB, a Secretin-Like Protein Encoded by the Bundle-Forming-Pilus Operon of EnteropathogenicEscherichia coli , 2001, Journal of bacteriology.

[117]  J. P. Dillard,et al.  Neisseria gonorrhoeae secretes chromosomal DNA via a novel type IV secretion system , 2005, Molecular microbiology.

[118]  B. Geller Energy requirements for protein translocation across the Escherichia coli inner membrane , 1991, Molecular microbiology.

[119]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[120]  G. Plano,et al.  Type III export: new uses for an old pathway , 2001, Molecular microbiology.

[121]  I. Wang,et al.  Holins: the protein clocks of bacteriophage infections. , 2000, Annual review of microbiology.

[122]  M. Saier,et al.  Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. , 1998, Advances in microbial physiology.

[123]  H. Saibil,et al.  Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. , 2001, European journal of biochemistry.

[124]  V. de Lorenzo,et al.  Export of autotransported proteins proceeds through an oligomeric ring shaped by C‐terminal domains , 2002, The EMBO journal.

[125]  M. Karavolos,et al.  Type III Secretion of the Salmonella Effector Protein SopE Is Mediated via an N-Terminal Amino Acid Signal and Not an mRNA Sequence , 2005, Journal of bacteriology.

[126]  M. Saier,et al.  Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system , 2002, Archives of Microbiology.

[127]  M. Hofnung,et al.  Phylogenetic analyses of the ATP-binding constituents of bacterial extracytoplasmic receptor-dependent ABC-type nutrient uptake permeases. , 1995, Research in microbiology.

[128]  D. Dubnau,et al.  The Ins and Outs of DNA Transfer in Bacteria , 2005, Science.

[129]  W. Hol,et al.  Type II secretion: from structure to function. , 2006, FEMS microbiology letters.

[130]  E. Hartmann,et al.  Diversity and evolution of protein translocation. , 2005, Annual review of microbiology.

[131]  Huilin Li,et al.  Protein secretion in the absence of ATP: the autotransporter, two-partner secretion and chaperone/usher pathways of Gram-negative bacteria (Review) , 2005, Molecular membrane biology.

[132]  M H Saier,et al.  A family of gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from gram-negative bacteria. , 1997, FEMS microbiology letters.

[133]  J. Weiner,et al.  Differential effects of a molybdopterin synthase sulfurylase (moeB) mutation on Escherichia coli molybdoenzyme maturation. , 2002, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[134]  M. van der Laan,et al.  SecDFyajC is not required for the maintenance of the proton motive force , 2001, FEBS letters.

[135]  G. Finazzi,et al.  The energetics of the chloroplast Tat protein transport pathway revisited. , 2005, Trends in plant science.

[136]  R. Dalbey,et al.  Oxal/Alb3/YidC system for insertion of membrane proteins in mitochondria, chloroplasts and bacteria (Review) , 2005, Molecular membrane biology.

[137]  J. Heesemann,et al.  Molecular Analysis of Transport and Oligomerization of the Yersinia enterocolitica Adhesin YadA , 2003, Journal of bacteriology.

[138]  Samuel I. Miller,et al.  Structural characterization of the molecular platform for type III secretion system assembly , 2005, Nature.

[139]  J. Tommassen,et al.  Role of the Pilot Protein YscW in the Biogenesis of the YscC Secretin in Yersinia enterocolitica , 2004, Journal of bacteriology.

[140]  J. S. St. Geme,et al.  Trimeric autotransporters: a distinct subfamily of autotransporter proteins. , 2005, Trends in microbiology.

[141]  C. Stathopoulos,et al.  Autotransporter and Two-Partner Secretion: Delivery of Large-Size Virulence Factors by Gram-Negative Bacterial Pathogens , 2004, Critical reviews in microbiology.

[142]  Jr. M.H. Saier,et al.  Families of Proteins Forming Transmembrane Channels , 2000, The Journal of Membrane Biology.

[143]  S. Hultgren,et al.  PapD-like chaperones and pilus biogenesis. , 2000, Seminars in cell & developmental biology.

[144]  M. Saier,et al.  The general protein secretory pathway: phylogenetic analyses leading to evolutionary conclusions. , 2003, Biochimica et biophysica acta.

[145]  P. Christie,et al.  Type IV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines , 2001, Molecular microbiology.

[146]  Randy Schekman,et al.  Protein Translocation Across Biological Membranes , 2005, Science.

[147]  J. Eswaran,et al.  Three's company: component structures bring a closer view of tripartite drug efflux pumps. , 2004, Current opinion in structural biology.

[148]  U. Bläsi,et al.  Holins: form and function in bacteriophage lysis. , 1995, FEMS microbiology reviews.

[149]  J. Betton,et al.  New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH , 1996, Molecular microbiology.

[150]  M. Saier A Functional-Phylogenetic Classification System for Transmembrane Solute Transporters , 2000, Microbiology and Molecular Biology Reviews.

[151]  M. Saier,et al.  A novel family of channel-forming, autotransporting, bacterial virulence factors. , 1997, Molecular membrane biology.

[152]  E. Bokma,et al.  Interactions underlying assembly of the Escherichia coli AcrAB–TolC multidrug efflux system , 2004, Molecular microbiology.

[153]  D. Thanassi Ushers and secretins: channels for the secretion of folded proteins across the bacterial outer membrane. , 2002, Journal of molecular microbiology and biotechnology.

[154]  A. Yim,et al.  The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[155]  M. Urbanus,et al.  Signal Recognition Particle (SRP)-mediated Targeting and Sec-dependent Translocation of an Extracellular Escherichia coli Protein* , 2003, The Journal of Biological Chemistry.

[156]  R. Haas,et al.  Functional and Topological Characterization of Novel Components of the comB DNA Transformation Competence System in Helicobacter pylori , 2006, Journal of bacteriology.

[157]  J. Eswaran,et al.  Structure of the ligand-blocked periplasmic entrance of the bacterial multidrug efflux protein TolC. , 2004, Journal of molecular biology.

[158]  G. Young,et al.  A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[159]  A. Driessen,et al.  SecA Is Not Required for Signal Recognition Particle-mediated Targeting and Initial Membrane Insertion of a Nascent Inner Membrane Protein* , 1999, The Journal of Biological Chemistry.

[160]  Frank Sargent,et al.  Behaviour of topological marker proteins targeted to the Tat protein transport pathway , 2002, Molecular microbiology.

[161]  M. Prevost,et al.  Type IV-Like Pili Formed by the Type II Secreton: Specificity, Composition, Bundling, Polar Localization, and Surface Presentation of Peptides , 2003, Journal of bacteriology.

[162]  N. Pfanner,et al.  Sam35 of the Mitochondrial Protein Sorting and Assembly Machinery Is a Peripheral Outer Membrane Protein Essential for Cell Viability* , 2004, Journal of Biological Chemistry.

[163]  Milton H. Saier,et al.  Protein-Translocating Trimeric Autotransporters of Gram-Negative Bacteria , 2006, Journal of bacteriology.