Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods

Abstract. Liquid water stored on the surface of ice sheets and glaciers impacts surface mass balance, ice dynamics, and heat transport. Multispectral remote sensing can be used to detect supraglacial lakes and estimate their depth and area. In this study, we use in situ spectral and bathymetric data to assess lake depth retrieval using the recently launched Landsat 8 Operational Land Imager (OLI). We also extend our analysis to other multispectral sensors to evaluate their performance with similar methods. Digital elevation models derived from WorldView stereo imagery (pre-lake filling and post-drainage) are used to validate spectrally derived depths, combined with a lake edge determination from imagery. The optimal supraglacial lake depth retrieval is a physically based single-band model applied to two OLI bands independently (red and panchromatic) that are then averaged together. When OLI- and WorldView-derived depths are differenced, they yield a mean and standard deviation of 0.0 ± 1.6 m. This method is then applied to OLI data for the Sermeq Kujalleq (Jakobshavn Isbrae) region of Greenland to study the spatial and intra-seasonal variability of supraglacial lakes during summer 2014. We also give coefficients for estimating supraglacial lake depth using a similar method with other multispectral sensors.

[1]  Xavier Fettweis,et al.  A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet , 2013 .

[2]  Luthfi Ramadani,et al.  Preliminary Investigation , 2015, 2015 Second International Conference on Computing Technology and Information Management (ICCTIM).

[3]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[4]  A. Pope Reproducibly estimating and evaluating supraglacial lake depth with Landsat 8 and other multispectral sensors , 2016 .

[5]  Gwenn E. Flowers,et al.  Modelling water flow under glaciers and ice sheets , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Howard Carter,et al.  A PRELIMINARY INVESTIGATION , 2010 .

[7]  M. R. van den Broeke,et al.  The seasonal cycle and interannual variability of surface energy balance and melt in the ablation zone of the west Greenland ice sheet , 2011 .

[8]  Ute Beyer,et al.  Remote Sensing And Image Interpretation , 2016 .

[9]  Ian Joughin,et al.  An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery , 2016 .

[10]  A. Malin Johansson,et al.  Adaptive Classification of Supra-Glacial Lakes on the West Greenland Ice Sheet , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[11]  A. B. Mikkelsen,et al.  A decade of supraglacial lake volume estimates across a land-terminating margin of the Greenland Ice Sheet , 2013 .

[12]  N. Glasser,et al.  A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse , 2007, Journal of Glaciology.

[13]  T. Fong Ames Stereo Pipeline , 2013 .

[14]  T. Scambos,et al.  Derivation and Validation of Supraglacial Lake Volumes on the Greenland Ice Sheet from High-Resolution Satellite Imagery , 2016 .

[15]  Allen Pope,et al.  Impact of spatial, spectral, and radiometric properties of multispectral imagers on glacier surface classification , 2014 .

[16]  Philippe Huybrechts,et al.  Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage , 2011, Nature.

[17]  Paul E. Lewis,et al.  MODTRAN 5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options: update , 2005 .

[18]  Michael J. Willis,et al.  Recharge of a subglacial lake by surface meltwater in northeast Greenland , 2015, Nature.

[19]  M. Lüthi,et al.  A ten-year record of supraglacial lake evolution and rapid drainage in West Greenland using an automated processing algorithm for multispectral imagery , 2013 .

[20]  D. Lampkin,et al.  A preliminary investigation of the influence of basal and surface topography on supraglacial lake distribution near Jakobshavn Isbrae, western Greenland , 2011 .

[21]  André Morel,et al.  Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo , 1994 .

[22]  T. Scambos,et al.  Accelerated mass loss from Greenland ice sheet: Links to atmospheric circulation in the North Atlantic , 2015 .

[23]  M. Tedesco,et al.  In-situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft , 2011 .

[24]  E. Fry,et al.  Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements. , 1997, Applied optics.

[25]  Vena W. Chu,et al.  Greenland ice sheet hydrology , 2014 .

[26]  Richard B. Alley,et al.  Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations , 2004 .

[27]  D. Gallaher,et al.  A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm , 2012 .

[28]  Ian Joughin,et al.  Limits to future expansion of surface‐melt‐enhanced ice flow into the interior of western Greenland , 2015 .

[29]  Ian Joughin,et al.  Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage , 2008, Science.

[30]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[31]  M. Broxton,et al.  Ames Stereo Pipeline, NASA's Open Source Automated Stereogrammetry Software , 2010 .

[32]  T. James,et al.  Fast draining lakes on the Greenland Ice Sheet , 2011 .

[33]  Prasad Gogineni,et al.  Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet , 2014 .

[34]  P. Nienow,et al.  Seasonal evolution of supraglacial lake volume from ASTER imagery , 2009, Annals of Glaciology.

[35]  W. Philpot,et al.  Bathymetric mapping with passive multispectral imagery. , 1989, Applied Optics.

[36]  D. Macayeal,et al.  Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes , 2013 .

[37]  N. Glasser,et al.  Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: a comparative study , 2014, Annals of Glaciology.

[38]  Xavier Fettweis,et al.  Measurement and modeling of ablation of the bottom of supraglacial lakes in western Greenland , 2012 .

[39]  G. Hamilton,et al.  Validation of a method for determining the depth of glacial melt ponds using satellite imagery , 2011, Annals of Glaciology.

[40]  Konrad Steffen,et al.  Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow , 2002, Science.

[41]  Thomas Herring,et al.  Greenland supraglacial lake drainages triggered by hydrologically induced basal slip , 2015, Nature.

[42]  Kenton Lee,et al.  The Spectral Response of the Landsat-8 Operational Land Imager , 2014, Remote. Sens..

[43]  Harihar Rajaram,et al.  Evaluation of cryo‐hydrologic warming as an explanation for increased ice velocities in the wet snow zone, Sermeq Avannarleq, West Greenland , 2013 .

[44]  Jason E. Box,et al.  Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics , 2007, Journal of Glaciology.

[45]  Robert A. Leathers,et al.  Ocean color remote sensing of seagrass and bathymetry in the Bahamas Banks by high‐resolution airborne imagery , 2003 .

[46]  J. Oerlemans,et al.  Dust from the dark region in the western ablation zone of the Greenland ice sheet , 2010 .

[47]  D. Lampkin,et al.  Supraglacial melt channel networks in the Jakobshavn Isbræ region during the 2007 melt season , 2014 .

[48]  Julia A. Barsi,et al.  The next Landsat satellite: The Landsat Data Continuity Mission , 2012 .

[49]  A. B. Mikkelsen,et al.  A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland , 2014 .

[50]  I. Willis,et al.  High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet , 2013 .

[51]  James A. Gardner,et al.  MODTRAN5: a reformulated atmospheric band model with auxiliary species and practical multiple scattering options , 2004, SPIE Asia-Pacific Remote Sensing.

[52]  Allen Pope,et al.  Using in situ spectra to explore Landsat classification of glacier surfaces , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[53]  K. Baker,et al.  Optical properties of the clearest natural waters (200-800 nm). , 1981, Applied optics.

[54]  G. Hamilton,et al.  Evolution of melt pond volume on the surface of the Greenland Ice Sheet , 2007 .

[55]  Matt A. King,et al.  Ice Sheet During Supraglacial Lake Drainage Fracture Propagation to the Base of the Greenland , 2009 .

[56]  Matthew J. Hoffman,et al.  Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet , 2013 .

[57]  I. Howat,et al.  Brief Communication "Expansion of meltwater lakes on the Greenland Ice Sheet" , 2012 .

[58]  Ian M. Howat,et al.  Supraglacial lakes on the Greenland ice sheet advance inland under warming climate , 2015 .

[59]  Colin J. Gleason,et al.  Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet , 2015, Proceedings of the National Academy of Sciences.

[60]  C. Legleiter,et al.  Mapping the bathymetry of supraglacial lakes and streams on the Greenland ice sheet using field measurements and high-resolution satellite images , 2013 .

[61]  R. Lawrence,et al.  Spectrally based remote sensing of river bathymetry , 2009 .

[62]  R. Stumpf,et al.  Determination of water depth with high‐resolution satellite imagery over variable bottom types , 2003 .

[63]  Richard B. Alley,et al.  Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability , 2013 .

[64]  Carl J. Legleiter,et al.  Mapping gravel bed river bathymetry from space , 2012 .