A structural study of size selected WSe2 nanoflakes prepared via liquid phase exfoliation: X-ray absorption to electrochemical application

[1]  Kuei-Hsien Chen,et al.  Atomistic insights into highly active reconstructed edges of monolayer 2H-WSe2 photocatalyst , 2022, Nature Communications.

[2]  Pawin Iamprasertkun,et al.  Insights into Binding Mechanisms of Size-Selected Graphene Binders for Flexible and Conductive Porous Carbon Electrodes , 2021, Electrochimica Acta.

[3]  Pawin Iamprasertkun,et al.  The electrochemistry of size dependent graphene via liquid phase exfoliation: capacitance and ionic transport. , 2021, Physical chemistry chemical physics : PCCP.

[4]  Pawin Iamprasertkun,et al.  Controlling the flake size of bifunctional 2D WSe2 nanosheets as flexible binders and supercapacitor materials , 2020, Nanoscale advances.

[5]  Pawin Iamprasertkun,et al.  The Capacitance of Graphene: From Model Systems to Large‐Scale Devices , 2020 .

[6]  R. Dryfe,et al.  Potential dependent ionic sieving through functionalized laminar MoS2 membranes , 2019, 2D Materials.

[7]  Xiaoli Fan,et al.  Electronic and Magnetic Properties of Defected Monolayer WSe2 with Vacancies , 2019, Nanoscale Research Letters.

[8]  Alok M. Tripathi,et al.  Electrochemical intercalation of MoO3-MoS2 composite electrodes: Charge storage mechanism of non-hydrated cations , 2019, Electrochimica Acta.

[9]  G. Yin,et al.  Enhanced hydrogen evolution reaction activity of hydrogen-annealed vertical MoS2 nanosheets , 2018, RSC advances.

[10]  Ho Won Jang,et al.  Hydrogen Evolution Reaction at Anion Vacancy of Two-Dimensional Transition-Metal Dichalcogenides: Ab Initio Computational Screening. , 2018, The journal of physical chemistry letters.

[11]  R. Yimnirun,et al.  Synchrotron X-ray Absorption Spectroscopy study of local structure in strontium-doped hydroxyapatite , 2017 .

[12]  Yuanfu Chen,et al.  Few-layered WSe2 nanoflowers anchored on graphene nanosheets: a highly efficient and stable electrocatalyst for hydrogen evolution , 2016 .

[13]  Weitao Yang,et al.  All The Catalytic Active Sites of MoS2 for Hydrogen Evolution. , 2016, Journal of the American Chemical Society.

[14]  Ying Sun,et al.  Controllable selenium vacancy engineering in basal planes of mechanically exfoliated WSe2 monolayer nanosheets for efficient electrocatalytic hydrogen evolution. , 2016, Chemical communications.

[15]  Xu Zhao,et al.  Manipulation of electronic structure in WSe2 monolayer by strain , 2016 .

[16]  Yanrong Li,et al.  Interwoven WSe2/CNTs hybrid network: A highly efficient and stable electrocatalyst for hydrogen evolution , 2016 .

[17]  I. Kinloch,et al.  Comparison of Two-Dimensional Transition Metal Dichalcogenides for Electrochemical Supercapacitors , 2016 .

[18]  R. Guo,et al.  Local structure study of phase transition behavior in Ba(Ti,Sn)O3 perovskite by X-ray absorption fine structure , 2016 .

[19]  J. Coleman,et al.  Electrochemical Applications of Two-Dimensional Nanosheets: The Effect of Nanosheet Length and Thickness , 2016 .

[20]  J. Coleman,et al.  Thickness Dependence and Percolation Scaling of Hydrogen Production Rate in MoS2 Nanosheet and Nanosheet-Carbon Nanotube Composite Catalytic Electrodes. , 2016, ACS nano.

[21]  R. Vaia,et al.  Mechanism for Liquid Phase Exfoliation of MoS2 , 2016 .

[22]  R. Dryfe,et al.  Characterization of MoS2-Graphene Composites for High-Performance Coin Cell Supercapacitors. , 2015, ACS applied materials & interfaces.

[23]  Xiaoxin Zou,et al.  Noble metal-free hydrogen evolution catalysts for water splitting. , 2015, Chemical Society reviews.

[24]  Yanguang Li,et al.  Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction , 2015 .

[25]  M. Pumera,et al.  2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition. , 2015, Chemical communications.

[26]  Jonathan N. Coleman,et al.  Large-Scale Production of Size-Controlled MoS2 Nanosheets by Shear Exfoliation , 2015 .

[27]  M. Pumera,et al.  Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method. , 2014, ACS nano.

[28]  Zhenxing Wang,et al.  Component-Controllable WS2(1–x)Se2x Nanotubes for Efficient Hydrogen Evolution Reaction , 2014 .

[29]  Udo Schwingenschlögl,et al.  Strain engineering of WS2, WSe2, and WTe2 , 2014 .

[30]  Haotian Wang,et al.  MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. , 2013, Nano letters.

[31]  R. Guo,et al.  Investigation of local structure in BaTiO3–BaZrO3 system by synchrotron X-ray absorption spectroscopy , 2013 .

[32]  James R. McKone,et al.  Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. , 2013, Journal of the American Chemical Society.

[33]  J. Coleman,et al.  Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size , 2012 .

[34]  Xile Hu,et al.  Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts , 2011 .

[35]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[36]  Thomas Bligaard,et al.  Trends in the exchange current for hydrogen evolution , 2005 .

[37]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[38]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[39]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[40]  E. Stern,et al.  Anisotropic x-ray absorption in layered compounds , 1977 .

[41]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[42]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .

[43]  Pawin Iamprasertkun,et al.  An Auto-oxidation of Exfoliated MoS2 in N-Methyl-2-Pyrrolidone: from 2D Nanosheets to 3D Nanorods , 2021, New Journal of Chemistry.

[44]  J. Nørskov,et al.  Hydrogen evolution on nano-particulate transition metal sulfides. , 2008, Faraday discussions.