Molecular and nanoscale materials and devices in electronics.

Over the past several years, there have been many significant advances toward the realization of electronic computers integrated on the molecular scale and a much greater understanding of the types of materials that will be useful in molecular devices and their properties. It was demonstrated that individual molecules could serve as incomprehensibly tiny switch and wire one million times smaller than those on conventional silicon microchip. This has resulted very recently in the assembly and demonstration of tiny computer logic circuits built from such molecular scale devices. The purpose of this review is to provide a general introduction to molecular and nanoscale materials and devices in electronics.

[1]  R Lloyd Carroll,et al.  The genesis of molecular electronics. , 2002, Angewandte Chemie.

[2]  Thomas J. Meyer,et al.  Solid-State Diode-like Chemiluminescence Based on Serial, Immobilized Concentration Gradients in Mixed-Valent Poly[Ru(vbpy)3](PF6)2 Films , 1996 .

[3]  Christophe Dugave,et al.  Cis-trans isomerization of organic molecules and biomolecules: implications and applications. , 2003, Chemical reviews.

[4]  A. A. Yasseri,et al.  Design, synthesis, and characterization of prototypical multistate counters in three distinct architectures , 2002 .

[5]  D. Muller,et al.  The electronic structure at the atomic scale of ultrathin gate oxides , 1999, Nature.

[6]  A. Aviram Molecules for memory, logic and amplification , 1988 .

[7]  Franklin Anariba,et al.  Covalently Bonded Organic Monolayers on a Carbon Substrate: A New Paradigm for Molecular Electronics , 2001 .

[8]  Jeffrey W. Baldwin,et al.  UNIMOLECULAR ELECTRICAL RECTIFICATION IN HEXADECYLQUINOLINIUM TRICYANOQUINODIMETHANIDE , 1997 .

[9]  A. P. D. S. and,et al.  Proof-of-Principle of Molecular-Scale Arithmetic , 2000 .

[10]  H. K. Wickramasinghe Scanned-probe microscopes , 1989 .

[11]  Alberto Guenzi,et al.  Stereoisomerism and correlated rotation in molecular gear systems. Residual diastereomers of bis(2,3-dimethyl-9-triptycyl)methane , 1981 .

[12]  Vladimir N. Prigodin,et al.  Low-dimensional variable range hopping in conducting polymers , 2001 .

[13]  Dress,et al.  A photochemically driven molecular-level abacus , 2000, Chemistry.

[14]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[15]  M. Schulz The end of the road for silicon? , 1999, Nature.

[16]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[17]  Lei Fu,et al.  Ga2O3 Nanoribbons: Synthesis, Characterization, and Electronic Properties , 2003 .

[18]  J. Roy Sambles,et al.  Rectifying characteristics of Mg|(C16H33-Q3CNQ LB film)|Pt structures , 1990 .

[19]  James Hone,et al.  Chemical doping of individual semiconducting carbon-nanotube ropes , 2000 .

[20]  S. Xie,et al.  Very long carbon nanotubes , 1998, Nature.

[21]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[22]  Robert M. Metzger,et al.  ELECTRICAL RECTIFICATION BY A MOLECULE : THE ADVENT OF UNIMOLECULAR ELECTRONIC DEVICES , 1999 .

[23]  Jonathan S. Lindsey,et al.  Molecular Memories That Survive Silicon Device Processing and Real-World Operation , 2003, Science.

[24]  J. Brédas,et al.  Negative differential resistance behavior in conjugated molecular wires incorporating spacers: a quantum-chemical description. , 2001, Journal of the American Chemical Society.

[25]  Katz,et al.  Integration of Layered Redox Proteins and Conductive Supports for Bioelectronic Applications. , 2000, Angewandte Chemie.

[26]  R. Metzger,et al.  Rectification between 370 and 105 K in Hexadecylquinolinium Tricyanoquinodimethanide , 1999 .

[27]  Mark A. Ratner,et al.  Molecular electronics , 2005 .

[28]  P. Yang,et al.  Single Nanowire Lasers , 2001 .

[29]  James M Tour,et al.  NanoCell electronic memories. , 2003, Journal of the American Chemical Society.

[30]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[31]  Vincenzo Balzani,et al.  A Chemically and Electrochemically Switchable [2]Catenane Incorporating a Tetrathiafulvalene Unit. , 1998, Angewandte Chemie.

[32]  H. Jaeger,et al.  Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Peidong Yang,et al.  Microchannel Networks for Nanowire Patterning , 2000 .

[34]  H. Anderson Building molecular wires from the colours of life: conjugated porphyrin oligomers , 1999 .

[35]  A. Credi,et al.  Artificial molecular-level machines. , 2001, Chemical record.

[36]  Jonathan S. Lindsey,et al.  Characterization of charge storage in redox-active self-assembled monolayers , 2002 .

[37]  M. Fujihira,et al.  Photoelectrochemical responses of optically transparent electrodes modified with Langmuir-Blodgett films consisting of surfactant derivatives of electron donor, acceptor and sensitizer molecules , 1985 .

[38]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[39]  Daoben Zhu,et al.  Field-Effect Transistors Based on Langmuir−Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers , 2003 .

[40]  Yasushi Yokoyama,et al.  Fulgides for Memories and Switches. , 2000, Chemical reviews.

[41]  Christoph Strunk,et al.  Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements , 1998 .

[42]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[43]  O. Kahn,et al.  Spin-Transition Polymers: From Molecular Materials Toward Memory Devices , 1998 .

[44]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[45]  David J. Williams,et al.  Acid−Base Controllable Molecular Shuttles† , 1998 .

[46]  B. A. White,et al.  Kinetics of electron self-exchange reactions between metalloporphyrin sites in submicrometer polymeric films on electrodes , 1987 .

[47]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[48]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[49]  D W Bennett,et al.  Molecular Wires, Switches, and Memories , 2002, Annals of the New York Academy of Sciences.

[50]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[51]  F. Favier,et al.  Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays , 2001, Science.

[52]  A. Aviram,et al.  Rectification of STM Current to Graphite Covered with Phthalocyanine Molecules , 1992, Science.

[53]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[54]  E. Braun,et al.  DNA-Templated Carbon Nanotube Field-Effect Transistor , 2003, Science.

[55]  Kuhr,et al.  Synthesis of "Porphyrin-linker-Thiol" molecules with diverse linkers for studies of molecular-based information storage , 2000, The Journal of organic chemistry.

[56]  J. Gimzewski,et al.  An electromechanical amplifier using a single molecule , 1997 .

[57]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[58]  N. Harada,et al.  Light-driven monodirectional molecular rotor , 2022 .

[59]  James R. Heath,et al.  Wires, switches, and wiring. A route toward a chemically assembled electronic nanocomputer , 2000 .

[60]  K. W. Hipps,et al.  Unoccupied Orbital Mediated Tunneling: Resonance-Like Structures in the Tunneling Spectra of Polyacenes , 1994 .

[61]  Cees Dekker,et al.  Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale , 2001 .

[62]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[63]  J. Tour,et al.  Molecular electronics. Synthesis and testing of components. , 2000, Accounts of chemical research.

[64]  Richard Martel,et al.  Controlling doping and carrier injection in carbon nanotube transistors , 2002 .

[65]  M. Reed,et al.  Nanoscale metal/self-assembled monolayer/metal heterostructures , 1997 .

[66]  R. Murray,et al.  Ellipsometric, Microscopic, and Electrochemical Studies of the Electrochemical Polymerization of an Osmium Vinylpyridine Complex , 1990 .

[67]  T. D. Dunbar,et al.  Electron Transfer through Organic Molecules , 1999 .

[68]  Jason D. Monnell,et al.  Conductance Switching in Single Molecules Through Conformational Changes , 2001, Science.

[69]  Yuyuan Tian,et al.  Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions , 2003, Science.

[70]  J. F. Stoddart,et al.  A [2]Catenane-Based Solid State Electronically Reconfigurable Switch , 2000 .

[71]  R. Murray,et al.  Estimation of the rate of electron transfers between two contacting polymer surfaces , 1985 .

[72]  A. Aviram,et al.  Evidence of switching and rectification by a single molecule effected by a scanning tunneling microscope: Chem. Phys. Letters 146 (1988) 490 , 1989 .

[73]  Klaus Müllen,et al.  Diodenartige Strom‐Spannungs‐Kennlinie durch ein einzelnes Molekül – Rastertunnelspektroskopie mit submolekularer Auflösung an einem alkylierten, peri‐kondensierten Hexabenzocoronen , 1995 .

[74]  H. Fink,et al.  Electrical conduction through DNA molecules , 1999, Nature.

[75]  M. Crossley,et al.  An approach to porphyrin-based molecular wires: synthesis of a bis(porphyrin)tetraone and its conversion to a linearly conjugated tetrakisporphyrin system , 1991 .

[76]  F. Diederich Carbon-rich acetylenic scaffolding: rods, rings and switches , 2001 .

[77]  Toyoichi Tanaka,et al.  Multiple phases of polymer gels , 1992, Nature.

[78]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[79]  Maurizio Licchelli,et al.  Transition Metals as Switches , 1999 .

[80]  A. Bartik,et al.  Toward Metal-Capped One-Dimensional Carbon Allotropes: Wirelike C6−C20 Polyynediyl Chains That Span Two Redox-Active (η5-C5Me5)Re(NO)(PPh3) Endgroups , 2000 .

[81]  Jeffrey S. Moore,et al.  Design and Synthesis of a “Molecular Turnstile” , 1995 .

[82]  Wenfeng Qiu,et al.  Synthetic Molecular Rectifier of a Langmuir–Blodgett Film Based on a Novel Asymmetrically Substituted Dicyano-tri-tert-butylphthalocyanine , 2002 .

[83]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[84]  C. Gómez-Navarro,et al.  Performing current versus voltage measurements of single-walled carbon nanotubes using scanning force microscopy , 2002 .

[85]  Tien,et al.  Forming electrical networks in three dimensions by self-assembly , 2000, Science.

[86]  Lucia Flamigni,et al.  Photoactive molecular wires based on metalcomplexes , 2000 .

[87]  Douglas Philp,et al.  A Photochemically Driven Molecular Machine , 1993 .

[88]  Tao Xu,et al.  Electrical Rectification by a Monolayer of Hexadecylquinolinium Tricyanoquinodimethanide Measured between Macroscopic Gold Electrodes , 2001 .

[89]  Thorfinnur Gunnlaugsson,et al.  Luminescent molecular logic gates: the two-input inhibit (INH) function , 2000 .

[90]  T. D. Dunbar,et al.  Insertion, Conductivity, and Structures of Conjugated Organic Oligomers in Self-Assembled Alkanethiol Monolayers on Au{111} , 1998 .

[91]  H. Ahmed,et al.  Single electron transistor using a molecularly linked gold colloidal particle chain , 1997 .

[92]  Mark A. Reed,et al.  Electronic transport through metal-1,4-phenylene diisocyanide-metal junctions , 1999 .

[93]  Kuhr,et al.  Investigation of tightly coupled porphyrin arrays comprised of identical monomers for multibit information storage , 2000, The Journal of organic chemistry.

[94]  Ben L. Feringa,et al.  Chiroptical Molecular Switches. , 2000, Chemical reviews.

[95]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[96]  Francisco Zaera,et al.  Measurements of electron-transfer rates of charge-storage molecular monolayers on Si(100). Toward hybrid molecular/semiconductor information storage devices. , 2003, Journal of the American Chemical Society.

[97]  H. Dai,et al.  Modulated chemical doping of individual carbon nanotubes. , 2000, Science.

[98]  B. Feringa,et al.  In control of motion: from molecular switches to molecular motors. , 2001, Accounts of chemical research.

[99]  Chen,et al.  Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. , 1999, Science.

[100]  J. Fraser Stoddart,et al.  Logic Operations at the Molecular Level. An XOR Gate Based on a Molecular Machine , 1997 .

[101]  Ben L. Feringa,et al.  Chiroptical molecular switches , 1996 .

[102]  J. Lindsey,et al.  Studies related to the design and synthesis of a molecular octal counter , 2001 .

[103]  Norbert Hampp,et al.  Bacteriorhodopsin as a Photochromic Retinal Protein for Optical Memories. , 2000, Chemical reviews.

[104]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[105]  Masahiro Irie,et al.  Diarylethenes for Memories and Switches. , 2000, Chemical reviews.

[106]  G. Ashwell,et al.  Fine tuning of the photochromic absorption band of heteromolecular Langmuir–Blodgett films of zwitterionic donor-π-acceptor molecules , 1990 .

[107]  J. Tour,et al.  Are Single Molecular Wires Conducting? , 1996, Science.

[108]  Julio Gómez-Herrero,et al.  Visualization of single-walled carbon nanotubes electrical networks by scanning force microspy , 2001 .

[109]  B. Korgel,et al.  Nucleation and growth of germanium nanowires seeded by organic monolayer-coated gold nanocrystals. , 2002, Journal of the American Chemical Society.

[110]  A R Cook,et al.  Rapid Electron Tunneling Through Oligophenylenevinylene Bridges , 2001, Science.

[111]  Yu Huang,et al.  Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices , 2001, Nature.

[112]  Franklin Anariba,et al.  Electronic Conductance Behavior of Carbon-Based Molecular Junctions with Conjugated Structures , 2002 .

[113]  T. D. Dunbar,et al.  Evolution of Strategies for Self‐Assembly and Hookup of Molecule‐Based Devices , 1998 .

[114]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[115]  P. Avouris,et al.  Carbon Nanotube Inter- and Intramolecular Logic Gates , 2001 .

[116]  Noboru Oyama,et al.  Electrochemical responses of electrodes coated with redox polymers. Evidence for control of charge-transfer rates across polymeric layers by electron exchange between incorporated redox sites , 1981 .

[117]  R. Feynman There's plenty of room at the bottom , 1999 .

[118]  Kuhr,et al.  Synthesis of thiol-derivatized europium porphyrinic triple-decker sandwich complexes for multibit molecular information storage , 2000, The Journal of organic chemistry.

[119]  James M. Tour,et al.  Theoretical Study of a Molecular Resonant Tunneling Diode , 2000 .

[120]  Akihiko Tsuda,et al.  Fully Conjugated Porphyrin Tapes with Electronic Absorption Bands That Reach into Infrared , 2001, Science.

[121]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[122]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[123]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[124]  V. Magnasco,et al.  On the angular shape of van der Waals dimers of small polar molecules: Chem. Phys. Letters 160 (1989) 469 , 1989 .

[125]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[126]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[127]  Garry Berkovic,et al.  Spiropyrans and Spirooxazines for Memories and Switches. , 2000, Chemical reviews.

[128]  C. Lieber,et al.  Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.

[129]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[130]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[131]  M. Majda,et al.  Through-Bond and Chain-to-Chain Coupling. Two Pathways in Electron Tunneling through Liquid Alkanethiol Monolayers on Mercury Electrodes , 1997 .

[132]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[133]  A. Aviram,et al.  Evidence of switching and rectification by a single molecule effected with a scanning tunneling microscope , 1989 .

[134]  M. Crossley,et al.  Rigid, laterally-bridged bis-porphyrin system , 1987 .

[135]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[136]  A. Epstein,et al.  INTERFACE CONTROL OF LIGHT-EMITTING DEVICES BASED ON PYRIDINE-CONTAINING CONJUGATED POLYMERS , 1999 .

[137]  Joachim,et al.  Rotation of a single molecule within a supramolecular bearing , 1998, Science.

[138]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[139]  V. C. Moore,et al.  Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.

[140]  Kuhr,et al.  Synthesis of thiol-derivatized porphyrin dimers and trimers for studies of architectural effects on multibit information storage , 2000, The Journal of organic chemistry.

[141]  K. W. Hipps,et al.  Orbital-Mediated Tunneling, Inelastic Electron Tunneling, and Electrochemical Potentials for Metal Phthalocyanine Thin Films , 1999 .

[142]  Peter Beighton,et al.  de la Chapelle, A. , 1997 .

[143]  Zhao,et al.  Synthesis of thiol-derivatized ferrocene-porphyrins for studies of multibit information storage , 2000, The Journal of organic chemistry.

[144]  A. Solak,et al.  A mechanism for conductance switching in carbon-based molecular electronic junctions , 2002 .

[145]  Qian Wang,et al.  Germanium nanowire field-effect transistors with SiO2 and high-κ HfO2 gate dielectrics , 2003 .

[146]  G. Binnig,et al.  Tunneling through a controllable vacuum gap , 1982 .