Tubular deficiency of von Hippel-Lindau attenuates renal disease progression in anti-GBM glomerulonephritis.

[1]  W. Min,et al.  Glomerular structure and function require paracrine, not autocrine, VEGF-VEGFR-2 signaling. , 2010, Journal of the American Society of Nephrology : JASN.

[2]  Li Yang,et al.  Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury , 2010, Nature Medicine.

[3]  W. Hsueh,et al.  Critical role for osteopontin in diabetic nephropathy. , 2010, Kidney international.

[4]  S. Germain,et al.  Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding , 2010, Current opinion in hematology.

[5]  H. Gröne,et al.  Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. , 2009, The American journal of pathology.

[6]  G. Semenza Regulation of Vascularization by Hypoxia‐Inducible Factor 1 , 2009, Annals of the New York Academy of Sciences.

[7]  J. Bonventre,et al.  HIF in kidney disease and development. , 2009, Journal of the American Society of Nephrology : JASN.

[8]  J. Norman,et al.  Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. , 2008, Kidney international.

[9]  A. Agarwal,et al.  Heme oxygenase-1 deficiency promotes epithelial-mesenchymal transition and renal fibrosis. , 2008, Journal of the American Society of Nephrology : JASN.

[10]  Oliver Greiner,et al.  An efficient and versatile system for acute and chronic modulation of renal tubular function in transgenic mice , 2008, Nature Medicine.

[11]  M. Khamaisi,et al.  Renal Parenchymal Hypoxia, Hypoxia Response and the Progression of Chronic Kidney Disease , 2008, American Journal of Nephrology.

[12]  K. Kimura,et al.  Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. , 2007, The Journal of clinical investigation.

[13]  M. Nagata,et al.  Increased expression of vascular endothelial growth factor in kidney leads to progressive impairment of glomerular functions. , 2007, Journal of the American Society of Nephrology : JASN.

[14]  M. Le Hir,et al.  Abrogation of protein uptake through megalin-deficient proximal tubules does not safeguard against tubulointerstitial injury. , 2007, Journal of the American Society of Nephrology : JASN.

[15]  B. Hinz Formation and function of the myofibroblast during tissue repair. , 2007, The Journal of investigative dermatology.

[16]  M. Nangaku,et al.  Cobalt ameliorates renal injury in an obese, hypertensive type 2 diabetes rat model. , 2007, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[17]  C. Adin,et al.  Products of heme oxygenase and their potential therapeutic applications. , 2006, American journal of physiology. Renal physiology.

[18]  Tetsuhiro Tanaka,et al.  Induction of protective genes by cobalt ameliorates tubulointerstitial injury in the progressive Thy1 nephritis. , 2005, Kidney international.

[19]  Kai-Uwe Eckardt,et al.  Role of hypoxia in the pathogenesis of renal disease. , 2005, Kidney international. Supplement.

[20]  M. Nangaku Chronic hypoxia and tubulointerstitial injury: a final common pathway to end-stage renal failure. , 2005, Journal of the American Society of Nephrology : JASN.

[21]  Tetsuhiro Tanaka,et al.  Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model , 2005, Laboratory Investigation.

[22]  D. Schuppan,et al.  VEGF induces proliferation, migration, and TGF-beta1 expression in mouse glomerular endothelial cells via mitogen-activated protein kinase and phosphatidylinositol 3-kinase. , 2005, Biochemical and biophysical research communications.

[23]  W. Kriz,et al.  Pathways to nephron loss starting from glomerular diseases-insights from animal models. , 2005, Kidney international.

[24]  G. Semenza Intratumoral hypoxia, radiation resistance, and HIF-1. , 2004, Cancer cell.

[25]  Brian Keith,et al.  Differential Roles of Hypoxia-Inducible Factor 1α (HIF-1α) and HIF-2α in Hypoxic Gene Regulation , 2003, Molecular and Cellular Biology.

[26]  J. Haigh,et al.  Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. , 2003, The Journal of clinical investigation.

[27]  M. Le Hir,et al.  A novel mechanism of nephron loss in a murine model of crescentic glomerulonephritis. , 2003, Kidney international.

[28]  K. Rajewsky,et al.  Stringent doxycycline dependent control of CRE recombinase in vivo. , 2002, Nucleic acids research.

[29]  Kai-Uwe Eckardt,et al.  Expression of hypoxia-inducible factor-1alpha and -2alpha in hypoxic and ischemic rat kidneys. , 2002, Journal of the American Society of Nephrology : JASN.

[30]  A. Gressner,et al.  Cellular distribution and function of soluble guanylyl cyclase in rat kidney and liver. , 2001, Journal of the American Society of Nephrology : JASN.

[31]  J. Hughes,et al.  Impaired angiogenesis in the remnant kidney model: II. Vascular endothelial growth factor administration reduces renal fibrosis and stabilizes renal function. , 2001, Journal of the American Society of Nephrology : JASN.

[32]  J. Hughes,et al.  Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. , 2001, Journal of the American Society of Nephrology : JASN.

[33]  R. Jaenisch,et al.  Vascular tumors in livers with targeted inactivation of the von Hippel-Lindau tumor suppressor. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. Marcantoni,et al.  Regression of sclerosis in aging by an angiotensin inhibition-induced decrease in PAI-1. , 2000, Kidney international.

[35]  M. Shibuya,et al.  Expression of vascular endothelial growth factor and its receptors in rats with protein-overload nephrosis. , 1998, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[36]  C. Orphanides,et al.  Progressive renal disease: the chronic hypoxia hypothesis. , 1998, Kidney international. Supplement.

[37]  B. Klanke,et al.  Effects of vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF) on haemodynamics and permselectivity of the isolated perfused rat kidney. , 1998, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[38]  B. Brenner,et al.  Anemia ameliorates progressive renal injury in experimental DOCA-salt hypertension. , 1991, Journal of the American Society of Nephrology : JASN.

[39]  A. McMahon,et al.  Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. , 2010, The American journal of pathology.

[40]  C. Alpers,et al.  A new look at platelet-derived growth factor in renal disease. , 2008, Journal of the American Society of Nephrology : JASN.

[41]  T. Acker,et al.  Analysis of glomerular VEGF mRNA and protein expression in murine mesangioproliferative glomerulonephritis , 2006, Virchows Archiv.

[42]  S. Clifford,et al.  Von Hippel-Lindau disease: clinical and molecular perspectives. , 2001, Advances in cancer research.

[43]  M. Wehrmann,et al.  Significance of postglomerular capillaries in the pathogenesis of chronic renal failure. , 1996, Kidney & blood pressure research.