Lattice dynamics calculations based on density-functional perturbation theory in real space

Abstract A real-space formalism for density-functional perturbation theory (DFPT) is derived and applied for the computation of harmonic vibrational properties in molecules and solids. The practical implementation using numeric atom-centered orbitals as basis functions is demonstrated exemplarily for the all-electron Fritz Haber Institute ab initio molecular simulations ( FHI-aims ) package. The convergence of the calculations with respect to numerical parameters is carefully investigated and a systematic comparison with finite-difference approaches is performed both for finite (molecules) and extended (periodic) systems. Finally, the scaling tests and scalability tests on massively parallel computer systems demonstrate the computational efficiency.

[1]  S. Louie,et al.  First-principles study of electron linewidths in graphene. , 2009, Physical review letters.

[2]  Martin,et al.  Linear scaling method for phonon calculations from electronic structure. , 1995, Physical review letters.

[3]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[4]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[5]  B. Johansson,et al.  Phonons and electron-phonon interaction by linear-response theory within the LAPW method , 2001 .

[6]  Matthias Scheffler,et al.  All-electron formalism for total energy strain derivatives and stress tensor components for numeric atom-centered orbitals , 2015, Comput. Phys. Commun..

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Trygve Helgaker,et al.  The efficient optimization of molecular geometries using redundant internal coordinates , 2002 .

[9]  Scheffler,et al.  Total-energy gradients and lattice distortions at point defects in semiconductors. , 1985, Physical review. B, Condensed matter.

[10]  A. D. Corso Density functional perturbation theory within the projector augmented wave method , 2010 .

[11]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[12]  Ian M. Mills,et al.  Force Constants and Dipole-Moment Derivatives of Molecules from Perturbed Hartree-Fock Calculations. I , 1968 .

[13]  Claudia Ambrosch-Draxl,et al.  Force calculation and atomic-structure optimization for the full-potential linearized augmented plane-wave code WIEN , 1995, mtrl-th/9511002.

[14]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[15]  Yoshiyuki Kawazoe,et al.  First-Principles Determination of the Soft Mode in Cubic ZrO 2 , 1997 .

[16]  Feliciano Giustino,et al.  Fröhlich Electron-Phonon Vertex from First Principles. , 2015, Physical review letters.

[17]  G. Scuseria,et al.  Efficient evaluation of analytic vibrational frequencies in Hartree-Fock and density functional theory for periodic nonconducting systems. , 2007, The Journal of chemical physics.

[18]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[19]  T. Ohta,et al.  Quasiparticle dynamics in graphene , 2007 .

[20]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[21]  S. Louie,et al.  Ab initio study of hot electrons in GaAs , 2015, Proceedings of the National Academy of Sciences.

[23]  X. Gonze,et al.  Verification of first-principles codes: Comparison of total energies, phonon frequencies, electron–phonon coupling and zero-point motion correction to the gap between ABINIT and QE/Yambo , 2013, 1309.0729.

[24]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[25]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[26]  Bernard Delley,et al.  High order integration schemes on the unit sphere , 1996, J. Comput. Chem..

[27]  J. Maultzsch,et al.  Phonon Dispersion in Graphite , 2004 .

[28]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[29]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[30]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[31]  S. Louie,et al.  Electron-phonon interaction via electronic and lattice Wannier functions: superconductivity in boron-doped diamond reexamined. , 2007, Physical review letters.

[32]  Peter Pulay,et al.  Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules , 1969 .

[33]  A. D. Corso Density-functional perturbation theory with ultrasoft pseudopotentials , 2001 .

[34]  Stefan Goedecker,et al.  Daubechies wavelets for linear scaling density functional theory. , 2014, The Journal of chemical physics.

[35]  X. Gonze,et al.  Density-functional approach to nonlinear-response coefficients of solids. , 1989, Physical review. B, Condensed matter.

[36]  S. Louie,et al.  Phonon-assisted optical absorption in silicon from first principles. , 2012, Physical review letters.

[37]  S. Louie,et al.  Electron-phonon renormalization of the direct band gap of diamond. , 2010, Physical review letters.

[38]  Yannick Gillet,et al.  Temperature dependence of electronic eigenenergies in the adiabatic harmonic approximation , 2014, 1408.2752.

[39]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[40]  Fang Liu,et al.  Recent developments in the ABINIT software package , 2016, Comput. Phys. Commun..

[41]  Francesco Mauri,et al.  Electron transport and hot phonons in carbon nanotubes. , 2005, Physical review letters.

[42]  Martin Head-Gordon,et al.  An efficient approach for self-consistent-field energy and energy second derivatives in the atomic-orbital basis. , 2005, The Journal of chemical physics.

[43]  N. A. Romero,et al.  Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  J. S. Binkley,et al.  Derivative studies in hartree-fock and møller-plesset theories , 2009 .

[45]  Clifford E. Dykstra,et al.  Derivative Hartree—Fock theory to all orders , 1984 .

[46]  Harris Simplified method for calculating the energy of weakly interacting fragments. , 1985, Physical review. B, Condensed matter.

[47]  S. Hirata,et al.  ANALYTICAL SECOND DERIVATIVES IN AB INITIO HARTREE-FOCK CRYSTAL ORBITAL THEORY OF POLYMERS , 1998 .

[48]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[49]  Foulkes,et al.  Tight-binding models and density-functional theory. , 1989, Physical review. B, Condensed matter.

[50]  E. Kioupakis,et al.  Auger recombination and free-carrier absorption in nitrides from first principles , 2010 .

[51]  P. Ming,et al.  Ab initio calculation of ideal strength and phonon instability of graphene under tension , 2007 .

[52]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[53]  K. Delaney,et al.  Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes , 2011 .

[54]  S. Louie,et al.  ab initio study of hot carriers in the first picosecond after sunlight absorption in silicon. , 2014, Physical review letters.

[55]  R. Orlando,et al.  Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. , 2013, The Journal of chemical physics.

[56]  R. Sternheimer,et al.  ELECTRONIC POLARIZABILITIES OF IONS FROM THE HARTREE-FOCK WAVE FUNCTIONS , 1954 .

[57]  A. Marini,et al.  Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene. , 2011, Physical review letters.

[58]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[59]  Yu.,et al.  Linear-response calculations within the linearized augmented plane-wave method. , 1994, Physical review. B, Condensed matter.

[60]  S. Louie,et al.  Electron-phonon interaction using Wannier functions , 2007 .

[61]  S. Poncé,et al.  Many-Body Effects on the Zero-Point Renormalization of the Band Structure , 2014 .

[62]  Matthias Scheffler,et al.  Efficient O(N) integration for all-electron electronic structure calculation using numeric basis functions , 2009, J. Comput. Phys..

[63]  R. Feynman Forces in Molecules , 1939 .

[64]  Savrasov,et al.  Electron-phonon interactions and related physical properties of metals from linear-response theory. , 1996, Physical review. B, Condensed matter.

[65]  J. Junquera,et al.  Ab initio local vibrational modes of light impurities in silicon , 2001, cond-mat/0109306.

[66]  L. Muñoz,et al.  ”QUANTUM THEORY OF SOLIDS” , 2009 .

[67]  R. Orlando,et al.  Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method. , 2012, The Journal of chemical physics.

[68]  Michael J. Frisch,et al.  Direct analytic SCF second derivatives and electric field properties , 1990 .

[69]  Christian Ochsenfeld,et al.  A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme , 1997 .

[70]  R. Bartlett,et al.  Analytical evaluation of energy derivatives in extended systems. I. Formalism , 1998 .

[71]  Strongly Correlated Impurity Band Superconductivity in Diamond: X-ray Spectroscopic evidence for upper Hubbard and mid-gap bands , 2004, cond-mat/0410296.

[72]  M. Scheffler,et al.  Evidence for photogenerated intermediate hole polarons in ZnO , 2015, Nature Communications.

[73]  K. Cheng Theory of Superconductivity , 1948, Nature.

[74]  Russell D. Johnson,et al.  NIST Computational Chemistry Comparison and Benchmark Database , 2005 .

[75]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[76]  Francesco Mauri,et al.  Kohn anomalies and electron-phonon interactions in graphite. , 2004, Physical review letters.

[77]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[78]  D. Bowler,et al.  O(N) methods in electronic structure calculations. , 2011, Reports on progress in physics. Physical Society.

[79]  A. Tkatchenko,et al.  Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions , 2012, 1201.0655.

[80]  G. V. Chester,et al.  Solid State Physics , 2000 .

[81]  Feliciano Giustino,et al.  Electron-phonon interactions from first principles , 2016, 1603.06965.

[82]  S. Poncé,et al.  Temperature dependence of the electronic structure of semiconductors and insulators. , 2015, The Journal of chemical physics.