Plasmonic nanolaser using epitaxially grown silver film

Successful development of epitaxial Ag as a new plasmonic platform has enabled low-threshold, continuous-wave (CW) operation of a SPASER-enabled nanolaser comprised of a subdiffraction plasmonic cavity and a single InGaN@GaN core-shell nanorod gain medium.

[1]  Hergen Eilers,et al.  From silver nanoparticles to thin films: Evolution of microstructure and electrical conduction on glass substrates , 2009 .

[2]  K. Vahala Optical microcavities , 2003, Nature.

[3]  Vladimir M. Shalaev,et al.  Searching for better plasmonic materials , 2009, 0911.2737.

[4]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[5]  S. Gwo,et al.  Structure and photoluminescence properties of epitaxially oriented GaN nanorods grown on Si(111) by plasma-assisted molecular-beam epitaxy , 2006 .

[6]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[7]  D. Bouwmeester,et al.  Self-tuned quantum dot gain in photonic crystal lasers. , 2005, Physical review letters.

[8]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[9]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[10]  S. Maier,et al.  Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures , 2005 .

[11]  Yasuhiko Arakawa,et al.  Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap , 2011 .

[12]  X. Zhang,et al.  A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation , 2008 .

[13]  Zhenyu Zhang,et al.  Quantitative determination of the metastability of flat Ag overlayers on GaAs(110). , 2001, Physical review letters.

[14]  Kuo-Jen Chao,et al.  Formation of Atomically Flat Silver Films on GaAs with a "Silver Mean" Quasi Periodicity , 1996, Science.

[15]  Yeshaiahu Fainman,et al.  Room-temperature subwavelength metallo-dielectric lasers , 2010 .

[16]  Sang‐Hyun Oh,et al.  Ultrasmooth Patterned Metals for Plasmonics and Metamaterials , 2009, Science.

[17]  R. Williams,et al.  Ultrasmooth silver thin films deposited with a germanium nucleation layer. , 2009, Nano letters.

[18]  M. Smit,et al.  Lasing in metallic-coated nanocavities , 2007 .

[19]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[20]  Mark I. Stockman,et al.  The spaser as a nanoscale quantum generator and ultrafast amplifier , 2009, 0908.3559.

[21]  S. Gwo,et al.  Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources , 2011 .

[22]  D. Gramotnev,et al.  Plasmonics beyond the diffraction limit , 2010 .

[23]  S. Strauf,et al.  Single quantum dot nanolaser , 2011 .

[24]  Optical gain of CdS quantum dots embedded in 3D photonic crystals , 1998 .

[25]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[26]  Urs Sennhauser,et al.  Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. , 2010, Nature communications.

[27]  R. E. Nahory,et al.  Optical gain in semiconductors , 1973 .

[28]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[29]  S. Lutgen,et al.  Gain analysis of blue nitride-based lasers by small signal modulation , 2010 .

[30]  Xiang Zhang,et al.  Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. , 2010, Nature materials.

[31]  Hyeyoung Ahn,et al.  Plasmonic green nanolaser based on a metal-oxide-semiconductor structure. , 2011, Nano letters.

[32]  Susumu Noda,et al.  Seeking the Ultimate Nanolaser , 2006, Science.

[33]  Martin T. Hill,et al.  Status and prospects for metallic and plasmonic nano-lasers [Invited] , 2010 .