Multiparametric linear programming: Support set and optimal partition invariancy

Traditional sensitivity and parametric analysis in linear optimization was based on preserving optimal basis. Interior point methods, however, do not converge to a basic solution (vertex) in general. Recently, there appeared new techniques in sensitivity analysis, which consist in preserving so called support set invariancy and optimal partition invariancy. This paper reflects the renascence of sensitivity and parametric analysis and extends single-parametric results to the case when there are multiple parameters in the objective function and in the right-hand side of equations. Multiparametric approach enables us to study more complex perturbation occurring in linear programs than the simpler sensitivity analysis does. We present a description of the set of admissible parameters under the mentioned invariances, and compare them with the classical optimal basis concept.

[1]  Alireza Ghaffari Hadigheh,et al.  Generalized support set invariancy sensitivity analysis in linear optimization , 2006 .

[2]  B. Jansen,et al.  Sensitivity analysis in linear programming: just be careful! , 1997 .

[3]  T. Gál,et al.  Multiparametric Linear Programming , 1972 .

[4]  F. Nožička Theorie der linearen parametrischen Optimierung , 1974 .

[5]  Efstratios N. Pistikopoulos,et al.  Multiparametric Linear Programming , 2009, Encyclopedia of Optimization.

[6]  Harvey J. Greenberg,et al.  Simultaneous Primal-Dual Right-Hand-Side Sensitivity Analysis from a Strictly Complementary Solution of a Linear Program , 1999, SIAM J. Optim..

[7]  C. Filippi An Algorithm for Approximate Multiparametric Linear Programming , 2004 .

[8]  James E. Ward,et al.  Approaches to sensitivity analysis in linear programming , 1991 .

[9]  J. G. Evans,et al.  Post Optimal Analyses, Parametric Programming and Related Topics , 1981 .

[10]  Harvey J. Greenberg,et al.  The use of the optimal partition in a linear programming solution for postoptimal analysis , 1994, Oper. Res. Lett..

[11]  T. Terlaky,et al.  The Optimal Set and Optimal Partition Approach to Linear and Quadratic Programming , 1996 .

[12]  Alireza Ghaffari Hadigheh,et al.  Sensitivity analysis in linear optimization: Invariant support set intervals , 2006, Eur. J. Oper. Res..

[13]  Richard E. Wendell Tolerance Sensitivity and Optimality Bounds in Linear Programming , 2004, Manag. Sci..

[14]  Richard E. Wendell,et al.  Linear Programming 3: The Tolerance Approach , 1997 .

[15]  Joseph G. Ecker,et al.  Postoptimal analyses, parametric programming, and related topics: McGraw-Hill, Düsseldorf, 1979, xvii + 380 pages, DM 104.- , 1981 .

[16]  Jan Stallaert,et al.  Post-optimality analysis of the optimal solution of a degenerate linear program using a pivoting algorithm , 2007, Comput. Oper. Res..

[17]  M. Morari,et al.  Geometric Algorithm for Multiparametric Linear Programming , 2003 .

[18]  Alireza Ghaffari Hadigheh,et al.  Bi-parametric optimal partition invariancy sensitivity analysis in linear optimization , 2008, Central Eur. J. Oper. Res..

[19]  T. Terlaky,et al.  Active Constraint Set Invariancy Sensitivity Analysis in Linear Optimization , 2007 .

[20]  L. Collatz,et al.  F. Nožiêka/J. Guddat/H. Hollatz/B. Bank, Theorie der linearen parametrischen Optimierung. 312 S., Berlin 1974. Akademie‐Verlag. Preis 52,‐ M , 2007 .