Seismic hyperbolic pattern detection and velocity analysis by simulated annealing

Simulated annealing (SA) is adopted to detect the parameters of line, circle, ellipse, and hyperbola. The equation of pattern is defined under translation and rotation. The parameters of the pattern are learned with probability in SA. The proposed SA parameter detection system can search a set of parameter vectors for the global minimal error. In the seismic experiments, the system can well detect line of direct wave and hyperbola of reflection wave in the real seismic data. In the seismic data processing, the reflection curves on common depth reflection point (CDP) gathers are hyperbolic patterns. So using SA, the parameters of each hyperbolic pattern can be detected. The parameters are used to calculate the root-mean-squared velocity Vrms. The Vrms is used to the normal-moveout (NMO) correction and stacking to reconstruct the image of the subsurface. Using the result of SA hyperbolic parameter detection, it is a novel method in the seismic velocity analysis.

[1]  M. M. Slotnick,et al.  Lessons in Seismic Computing , 1959 .

[2]  Klaus Mosegaard,et al.  INVERSION OF POST-STACK SEISMIC DATA USING SIMULATED ANNEALING1 , 1991 .

[3]  Kou-Yuan Huang,et al.  Simulated Annealing for Pattern Detection and Seismic Applications , 2009, J. Inf. Sci. Eng..

[4]  Klaus Mosegaard,et al.  A SIMULATED ANNEALING APPROACH TO SEISMIC MODEL OPTIMIZATION WITH SPARSE PRIOR INFORMATION , 1991 .

[5]  W. Schneider,et al.  The common depth point stack , 1984, Proceedings of the IEEE.

[6]  M. B. Dobrin Introduction to Geophysical Prospecting , 1976 .

[7]  Kou-Yuan Huang,et al.  Synchronous and Hierarchical Seismic Pattern Detection Using Simulated Annealing , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[8]  Öz Yilmaz,et al.  Seismic data processing , 1987 .

[9]  Constantino Tsallis,et al.  Optimization by Simulated Annealing: Recent Progress , 1995 .

[10]  Kou-Yuan Huang,et al.  Simulated Annealing for Pattern Detection and Seismic Application , 2007, IJCNN.

[11]  Jayanta Basak,et al.  Hough transform network: learning conoidal structures in a connectionist framework , 2002, IEEE Trans. Neural Networks.

[12]  Kou-Yuan Huang,et al.  Image processing of seismograms: (a) Hough transformation for the detection of seismic patterns; (b) thinning processing in the seismogram , 1985, Pattern Recognit..

[13]  Wafik B. Beydoun,et al.  Reference velocity model estimation from prestack waveforms: Coherency optimization by simulated annealing , 1989 .

[14]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.