Numerical continuation of canard orbits in slow–fast dynamical systems
暂无分享,去创建一个
Bernd Krauskopf | Hinke M. Osinga | Mathieu Desroches | B. Krauskopf | H. Osinga | M. Desroches | H. Osinga
[1] P. Szmolyan,et al. Canards in R3 , 2001 .
[2] É. Benoît. Chasse au canard , 1980 .
[3] M. Krupa,et al. Local analysis near a folded saddle-node singularity , 2010 .
[4] Thomas Erneux. Q-switching bifurcation in a laser with a saturable absorber , 1988 .
[5] Harry L. Swinney,et al. Complex periodic oscillations and Farey arithmetic in the Belousov–Zhabotinskii reaction , 1986 .
[6] Bernd Krauskopf,et al. The Geometry of Slow Manifolds near a Folded Node , 2008, SIAM J. Appl. Dyn. Syst..
[7] É. Benoît,et al. Canards et enlacements , 1990 .
[8] Thomas F. Fairgrieve,et al. AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .
[9] David Terman,et al. Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .
[10] Horacio G. Rotstein,et al. Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.
[11] F. Dumortier,et al. Birth of canard cycles , 2009 .
[12] Martin Wechselberger,et al. Bifurcations of mixed-mode oscillations in a stellate cell model , 2009 .
[13] B. Braaksma,et al. Singular Hopf Bifurcation in Systems with Fast and Slow Variables , 1998 .
[14] V. Arnold. Dynamical systems V. Bifurcation theory and catastrophe theory , 1994 .
[15] Nancy Kopell,et al. Synchronization of Strongly Coupled Excitatory Neurons: Relating Network Behavior to Biophysics , 2003, Journal of Computational Neuroscience.
[16] E. Freire,et al. Numerical Bifurcation Analysis of Electronic Circuits , 2007 .
[17] PERTURBATION SINGULI ` ERE EN DIMENSION TROIS : CANARDS EN UN POINT PSEUDO-SINGULIER NŒUD , 2001 .
[18] Bernd Krauskopf,et al. Computing Invariant Manifolds via the Continuation of Orbit Segments , 2007 .
[19] Baltazar D. Aguda,et al. Fast–slow variable analysis of the transition to mixed‐mode oscillations and chaos in the peroxidase reaction , 1988 .
[20] John Guckenheimer,et al. Return maps of folded nodes and folded saddle-nodes. , 2008, Chaos.
[21] Jozsi Z. Jalics,et al. A novel canard-based mechanism for mixed-mode oscillations in a neuronal model , 2008, 0804.0829.
[22] Georgi S. Medvedev,et al. Multimodal regimes in a compartmental model of the dopamine neuron , 2004 .
[23] Georgi Medvedev,et al. Multimodal oscillations in systems with strong contraction , 2007 .
[24] Christopher Jones,et al. Geometric singular perturbation theory , 1995 .
[25] John Guckenheimer,et al. Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..
[26] Nancy Kopell,et al. Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..
[27] É. Benoît. Perturbation singulière en dimension trois: Canards en un point pseudo-singulier nœud , 2001 .
[28] R. FitzHugh. Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.
[29] John Guckenheimer,et al. Periodic Orbit Continuation in Multiple Time Scale Systems , 2007 .
[30] Martin Krupa,et al. Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .
[31] Jianzhong Su,et al. Analysis of a Canard Mechanism by Which Excitatory Synaptic Coupling Can Synchronize Neurons at Low Firing Frequencies , 2004, SIAM J. Appl. Math..
[32] R. Larter,et al. Chaos via mixed-mode oscillations , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.
[33] J. Hindmarsh,et al. A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[34] John Guckenheimer,et al. The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..
[35] W. Beyn,et al. Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .
[36] T. Erneux,et al. Bifurcation phenomena in a laser with saturable absorber I , 1981 .
[37] Balth. van der Pol Jun.. LXXXVIII. On “relaxation-oscillations” , 1926 .
[38] Johan Grasman,et al. Relaxation Oscillations , 2009, Encyclopedia of Complexity and Systems Science.
[39] John Guckenheimer,et al. Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.
[40] Martin Wechselberger,et al. Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..
[41] Helwig Löffelmann,et al. GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .
[42] B. Krauskopf,et al. Self-pulsations of lasers with saturable absorber: dynamics and bifurcations , 1999 .
[43] John Guckenheimer,et al. The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..
[44] V. Sobolev,et al. Integral manifolds, canards and black swans , 2001 .
[45] John Guckenheimer,et al. Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..
[46] Bernd Krauskopf,et al. Numerical Continuation Methods for Dynamical Systems , 2007 .
[47] Jonathan E. Rubin,et al. Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.
[48] F. Takens. Constrained equations; a study of implicit differential equations and their discontinuous solutions , 1976 .
[49] J. Callot,et al. Chasse au canard , 1977 .
[50] John Guckenheimer,et al. Canards at Folded Nodes , 2005 .
[51] Neil Fenichel. Geometric singular perturbation theory for ordinary differential equations , 1979 .
[52] Martin Wechselberger,et al. HOMOCLINIC CLUSTERS AND CHAOS ASSOCIATED WITH A FOLDED NODE IN A STELLATE CELL MODEL , 2009 .
[53] Horacio G. Rotstein,et al. Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..
[54] N. Kopell,et al. Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.
[55] John Guckenheimer,et al. Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..
[56] M. Koper. Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram , 1995 .
[57] S. Baer,et al. Sungular hopf bifurcation to relaxation oscillations , 1986 .
[58] É. Benoît,et al. Chasse au canard (première partie) , 1981 .
[59] Bernd Krauskopf,et al. A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .
[60] A. Hodgkin,et al. A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.
[61] J. Rubin,et al. The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.
[62] K. Bar-Eli,et al. Canard explosion and excitation in a model of the Belousov-Zhabotinskii reaction , 1991 .
[63] Bernd Krauskopf,et al. The geometry of mixed-mode oscillations in the Olsen model for peroxidase-oxidase reaction , 2009 .
[64] Bernd Krauskopf,et al. Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. , 2008, Chaos.
[65] John Rinzel,et al. A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .
[66] Peter Szmolyan,et al. Multiple Time Scales and Canards in a Chemical Oscillator , 2001 .