Numerical continuation of canard orbits in slow–fast dynamical systems

A trajectory of a system with two clearly separated time scales generally consists of fast segments (or jumps) followed by slow segments where the trajectory follows an attracting part of a slow manifold. The switch back to fast dynamics typically occurs when the trajectory passes a fold with respect to a fast direction. A special role is played by trajectories known as canard orbits, which do not jump at a fold but, instead, follow a repelling slow manifold for some time. We concentrate here on the case of a slow–fast system with two slow and one fast variable, where canard orbits arise geometrically as intersection curves of two-dimensional attracting and repelling slow manifolds. Canard orbits are intimately related to the dynamics near special points known as folded singularities, which in turn have been shown to explain small-amplitude oscillations that can be found as part of so-called mixed-mode oscillations.In this paper we present a numerical method to detect and then follow branches of canard orbits in a system parameter. More specifically, we define well-posed two-point boundary value problems (BVPs) that represent orbit segments on the slow manifolds, and we continue their solution families with the package AUTO. In this way, we are able to deal effectively with the numerical challenge of strong attraction to and strong repulsion from the slow manifolds. Canard orbits are detected as the transverse intersection points of the curves along which attracting and repelling slow manifolds intersect a suitable section (near a folded node). These intersection points correspond to a unique pair of orbits segments, one on the attracting and one on the repelling slow manifold. After concatenation of the respective pairs of orbit segments, all detected canard orbits are represented as solutions of a single BVP, which allows us to continue them in system parameters. We demonstrate with two examples—the self-coupled FitzHugh–Nagumo system and a three-dimensional reduced Hodgkin–Huxley model—that branches of canard orbits can be computed reliably. Furthermore, our computations illustrate that the continuation of canard orbits allows one to find and investigate new types of dynamics, such as the interaction between canard orbits and a saddle periodic orbit that is generated in a singular Hopf bifurcation.

[1]  P. Szmolyan,et al.  Canards in R3 , 2001 .

[2]  É. Benoît Chasse au canard , 1980 .

[3]  M. Krupa,et al.  Local analysis near a folded saddle-node singularity , 2010 .

[4]  Thomas Erneux Q-switching bifurcation in a laser with a saturable absorber , 1988 .

[5]  Harry L. Swinney,et al.  Complex periodic oscillations and Farey arithmetic in the Belousov–Zhabotinskii reaction , 1986 .

[6]  Bernd Krauskopf,et al.  The Geometry of Slow Manifolds near a Folded Node , 2008, SIAM J. Appl. Dyn. Syst..

[7]  É. Benoît,et al.  Canards et enlacements , 1990 .

[8]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[9]  David Terman,et al.  Chaotic spikes arising from a model of bursting in excitable membranes , 1991 .

[10]  Horacio G. Rotstein,et al.  Introduction to focus issue: mixed mode oscillations: experiment, computation, and analysis. , 2008, Chaos.

[11]  F. Dumortier,et al.  Birth of canard cycles , 2009 .

[12]  Martin Wechselberger,et al.  Bifurcations of mixed-mode oscillations in a stellate cell model , 2009 .

[13]  B. Braaksma,et al.  Singular Hopf Bifurcation in Systems with Fast and Slow Variables , 1998 .

[14]  V. Arnold Dynamical systems V. Bifurcation theory and catastrophe theory , 1994 .

[15]  Nancy Kopell,et al.  Synchronization of Strongly Coupled Excitatory Neurons: Relating Network Behavior to Biophysics , 2003, Journal of Computational Neuroscience.

[16]  E. Freire,et al.  Numerical Bifurcation Analysis of Electronic Circuits , 2007 .

[17]  PERTURBATION SINGULI ` ERE EN DIMENSION TROIS : CANARDS EN UN POINT PSEUDO-SINGULIER NŒUD , 2001 .

[18]  Bernd Krauskopf,et al.  Computing Invariant Manifolds via the Continuation of Orbit Segments , 2007 .

[19]  Baltazar D. Aguda,et al.  Fast–slow variable analysis of the transition to mixed‐mode oscillations and chaos in the peroxidase reaction , 1988 .

[20]  John Guckenheimer,et al.  Return maps of folded nodes and folded saddle-nodes. , 2008, Chaos.

[21]  Jozsi Z. Jalics,et al.  A novel canard-based mechanism for mixed-mode oscillations in a neuronal model , 2008, 0804.0829.

[22]  Georgi S. Medvedev,et al.  Multimodal regimes in a compartmental model of the dopamine neuron , 2004 .

[23]  Georgi Medvedev,et al.  Multimodal oscillations in systems with strong contraction , 2007 .

[24]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[25]  John Guckenheimer,et al.  Chaos in the Hodgkin-Huxley Model , 2002, SIAM J. Appl. Dyn. Syst..

[26]  Nancy Kopell,et al.  Mixed-Mode Oscillations in Three Time-Scale Systems: A Prototypical Example , 2008, SIAM J. Appl. Dyn. Syst..

[27]  É. Benoît Perturbation singulière en dimension trois: Canards en un point pseudo-singulier nœud , 2001 .

[28]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[29]  John Guckenheimer,et al.  Periodic Orbit Continuation in Multiple Time Scale Systems , 2007 .

[30]  Martin Krupa,et al.  Mixed Mode Oscillations due to the Generalized Canard Phenomenon , 2006 .

[31]  Jianzhong Su,et al.  Analysis of a Canard Mechanism by Which Excitatory Synaptic Coupling Can Synchronize Neurons at Low Firing Frequencies , 2004, SIAM J. Appl. Math..

[32]  R. Larter,et al.  Chaos via mixed-mode oscillations , 1991, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[33]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  John Guckenheimer,et al.  The Forced van der Pol Equation I: The Slow Flow and Its Bifurcations , 2003, SIAM J. Appl. Dyn. Syst..

[35]  W. Beyn,et al.  Chapter 4 – Numerical Continuation, and Computation of Normal Forms , 2002 .

[36]  T. Erneux,et al.  Bifurcation phenomena in a laser with saturable absorber I , 1981 .

[37]  Balth. van der Pol Jun. LXXXVIII. On “relaxation-oscillations” , 1926 .

[38]  Johan Grasman,et al.  Relaxation Oscillations , 2009, Encyclopedia of Complexity and Systems Science.

[39]  John Guckenheimer,et al.  Numerical Computation of Canards , 2000, Int. J. Bifurc. Chaos.

[40]  Martin Wechselberger,et al.  Existence and Bifurcation of Canards in ℝ3 in the Case of a Folded Node , 2005, SIAM J. Appl. Dyn. Syst..

[41]  Helwig Löffelmann,et al.  GEOMETRY OF MIXED-MODE OSCILLATIONS IN THE 3-D AUTOCATALATOR , 1998 .

[42]  B. Krauskopf,et al.  Self-pulsations of lasers with saturable absorber: dynamics and bifurcations , 1999 .

[43]  John Guckenheimer,et al.  The Forced van der Pol Equation II: Canards in the Reduced System , 2003, SIAM J. Appl. Dyn. Syst..

[44]  V. Sobolev,et al.  Integral manifolds, canards and black swans , 2001 .

[45]  John Guckenheimer,et al.  Singular Hopf Bifurcation in Systems with Two Slow Variables , 2008, SIAM J. Appl. Dyn. Syst..

[46]  Bernd Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems , 2007 .

[47]  Jonathan E. Rubin,et al.  Giant squid-hidden canard: the 3D geometry of the Hodgkin–Huxley model , 2007, Biological Cybernetics.

[48]  F. Takens Constrained equations; a study of implicit differential equations and their discontinuous solutions , 1976 .

[49]  J. Callot,et al.  Chasse au canard , 1977 .

[50]  John Guckenheimer,et al.  Canards at Folded Nodes , 2005 .

[51]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[52]  Martin Wechselberger,et al.  HOMOCLINIC CLUSTERS AND CHAOS ASSOCIATED WITH A FOLDED NODE IN A STELLATE CELL MODEL , 2009 .

[53]  Horacio G. Rotstein,et al.  Canard Induced Mixed-Mode Oscillations in a Medial Entorhinal Cortex Layer II Stellate Cell Model , 2008, SIAM J. Appl. Dyn. Syst..

[54]  N. Kopell,et al.  Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. , 2008, Chaos.

[55]  John Guckenheimer,et al.  Computing Slow Manifolds of Saddle Type , 2012, SIAM J. Appl. Dyn. Syst..

[56]  M. Koper Bifurcations of mixed-mode oscillations in a three-variable autonomous Van der Pol-Duffing model with a cross-shaped phase diagram , 1995 .

[57]  S. Baer,et al.  Sungular hopf bifurcation to relaxation oscillations , 1986 .

[58]  É. Benoît,et al.  Chasse au canard (première partie) , 1981 .

[59]  Bernd Krauskopf,et al.  A Lin's method approach to finding and continuing heteroclinic connections involving periodic orbits , 2008 .

[60]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[61]  J. Rubin,et al.  The selection of mixed-mode oscillations in a Hodgkin-Huxley model with multiple timescales. , 2008, Chaos.

[62]  K. Bar-Eli,et al.  Canard explosion and excitation in a model of the Belousov-Zhabotinskii reaction , 1991 .

[63]  Bernd Krauskopf,et al.  The geometry of mixed-mode oscillations in the Olsen model for peroxidase-oxidase reaction , 2009 .

[64]  Bernd Krauskopf,et al.  Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. , 2008, Chaos.

[65]  John Rinzel,et al.  A Formal Classification of Bursting Mechanisms in Excitable Systems , 1987 .

[66]  Peter Szmolyan,et al.  Multiple Time Scales and Canards in a Chemical Oscillator , 2001 .