PyTorch: An Imperative Style, High-Performance Deep Learning Library
暂无分享,去创建一个
Natalia Gimelshein | Alykhan Tejani | Soumith Chintala | Junjie Bai | Sam Gross | Adam Paszke | Gregory Chanan | Alban Desmaison | Adam Lerer | Francisco Massa | Trevor Killeen | Luca Antiga | Zach DeVito | Lu Fang | Martin Raison | James Bradbury | Benoit Steiner | Sasank Chilamkurthy | Zeming Lin | Andreas Köpf | Edward Yang | Zach DeVito | Benoit Steiner | James Bradbury | Soumith Chintala | Adam Paszke | S. Gross | Gregory Chanan | E. Yang | Zeming Lin | Alban Desmaison | L. Antiga | Adam Lerer | Francisco Massa | Trevor Killeen | N. Gimelshein | Andreas Köpf | Martin Raison | Alykhan Tejani | Sasank Chilamkurthy | Lu Fang | Junjie Bai | A. Tejani | Sam Gross
[1] Philip S. Abrams,et al. An APL machine , 1970 .
[2] Hans-Hellmut Nagel,et al. Automatic differentiation facilitates OF-integration into steering-angle-based road vehicle tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).
[3] Kathryn S. McKinley,et al. Hoard: a scalable memory allocator for multithreaded applications , 2000, SIGP.
[4] Eric Jones,et al. SciPy: Open Source Scientific Tools for Python , 2001 .
[5] Samy Bengio,et al. Torch: a modular machine learning software library , 2002 .
[6] Dan Piponi,et al. Automatic Differentiation, C++ Templates, and Photogrammetry , 2004, J. Graphics, GPU, & Game Tools.
[7] Emery D. Berger,et al. Quantifying the performance of garbage collection vs. explicit memory management , 2005, OOPSLA '05.
[8] Jason Evans April. A Scalable Concurrent malloc(3) Implementation for FreeBSD , 2006 .
[9] Yann LeCun,et al. EBLearn: Open-Source Energy-Based Learning in C++ , 2009, 2009 21st IEEE International Conference on Tools with Artificial Intelligence.
[10] Wes McKinney,et al. Data Structures for Statistical Computing in Python , 2010, SciPy.
[11] Clément Farabet,et al. Torch7: A Matlab-like Environment for Machine Learning , 2011, NIPS 2011.
[12] Stephen J. Wright,et al. Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent , 2011, NIPS.
[13] John Tran,et al. cuDNN: Efficient Primitives for Deep Learning , 2014, ArXiv.
[14] Trevor Darrell,et al. Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.
[15] Andrew Lavin,et al. maxDNN: An Efficient Convolution Kernel for Deep Learning with Maxwell GPUs , 2015, ArXiv.
[16] Kenta Oono,et al. Chainer : a Next-Generation Open Source Framework for Deep Learning , 2015 .
[17] Amit Agarwal,et al. CNTK: Microsoft's Open-Source Deep-Learning Toolkit , 2016, KDD.
[18] John Salvatier,et al. Theano: A Python framework for fast computation of mathematical expressions , 2016, ArXiv.
[19] Dougal Maclaurin,et al. Modeling, Inference and Optimization With Composable Differentiable Procedures , 2016 .
[20] Andrew Lavin,et al. Fast Algorithms for Convolutional Neural Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[21] Alan Edelman,et al. Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..
[22] Kevin Duh,et al. DyNet: The Dynamic Neural Network Toolkit , 2017, ArXiv.
[23] Tom Schaul,et al. StarCraft II: A New Challenge for Reinforcement Learning , 2017, ArXiv.
[24] Luca Antiga,et al. Automatic differentiation in PyTorch , 2017 .
[25] Barak A. Pearlmutter,et al. Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..
[26] Nicolas Usunier,et al. Forward Modeling for Partial Observation Strategy Games - A StarCraft Defogger , 2018, NeurIPS.