CONNECTIONS BETWEEN BOUNDED-VARIATION CONTROL AND DYNKIN GAMES

A general result is obtained for the existence of saddle-point in a stochastic game of timing, by exploiting its connection with a bounded-variation control problem. Weak compactness arguments prove the existence of an optimal process for the control problem. It is shown that this optimal process generates a pair of stopping times that constitute a saddle-point for the game, using the method of comparing costs at nearby points by switching paths at appropriate random times.

[1]  J. Snell Applications of martingale system theorems , 1952 .

[2]  J. Komlos A generalization of a problem of Steinhaus , 1967 .

[3]  E. B. Dynkin,et al.  Game variant of a problem on optimal stopping , 1969 .

[4]  N. Krylov,et al.  CONTROL OF MARKOV PROCESSES AND $ W$-SPACES , 1971 .

[5]  Avner Friedman,et al.  Stochastic differential games , 1972 .

[6]  I. Gihman,et al.  Stochastic Differential Equations , 1975 .

[7]  A. Friedman Stochastic games and variational inequalities , 1973 .

[8]  A. Bensoussan,et al.  Nonlinear variational inequalities and differential games with stopping times , 1974 .

[9]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[10]  Avner Friedman,et al.  Nonzero-sum stochastic differential games with stopping times and free boundary problems , 1977 .

[11]  J. Bismut Sur un problème de dynkin , 1977 .

[12]  Alain Bensoussan,et al.  Applications of Variational Inequalities in Stochastic Control , 1982 .

[13]  Ł. Stettner Zero-sum Markov games with stopping and impulsive strategies , 1982 .

[14]  J. Lepeltier,et al.  Le jeu de dynkin en theorie generale sans l'hypothese de mokobodski , 1984 .

[15]  S. Shreve,et al.  Connections between Optimal Stopping and Singular Stochastic Control I. Monotone Follower Problems , 1984 .

[16]  H. Morimoto Dynkin games and martingale methods , 1984 .

[17]  S. Shreve,et al.  Connections Between Optimal Stopping and Singular Stochastic Control II. Reflected Follower Problems , 1985 .

[18]  Michael I. Taksar,et al.  Average Optimal Singular Control and a Related Stopping Problem , 1985, Math. Oper. Res..

[19]  J. Lepeltier,et al.  Zero-sum stochastic differential games and backward equations , 1995 .

[20]  Ioannis Karatzas,et al.  Irreversible investment and industry equilibrium , 1996, Finance Stochastics.

[21]  Jakša Cvitanić,et al.  Backward stochastic differential equations with reflection and Dynkin games , 1996 .

[22]  Ioannis Karatzas A pathwise approach to Dynkin games , 1996 .

[23]  J. Lepeltier,et al.  Reflected BSDEs and mixed game problem , 2000 .

[24]  Nicolas Vieille,et al.  Continuous-Time Dynkin Games with Mixed Strategies , 2002, SIAM J. Control. Optim..