Effects of background color on detecting spot stimuli in the upper and lower visual fields

Participants were required to detect spot stimuli briefly presented to the upper, central, or lower visual fields. The stimuli were presented either on a green or a red background. Results showed that reaction time (RT) was shorter for the lower visual field (LVF) compared to the upper visual field (UVF). Furthermore, this LVF advantage was significantly reduced in the red background condition compared to the green one. A red light is known to suppress activity of the magno-dominated stream. Therefore, the LVF advantage in RT can be explained as resulting from the biased representation of the magno-dominated stream in the LVF.

[1]  Chikashi Michimata,et al.  Effects of Background Color on the Global and Local Processing of Hierarchically Organized Stimuli , 1999, Journal of Cognitive Neuroscience.

[2]  G. Rizzolatti,et al.  Movements of attention in the three spatial dimensions and the meaning of “neutral” cues , 1987, Neuropsychologia.

[3]  W. H. Payne Visual Reaction Times on a Circle about the Fovea , 1967, Science.

[4]  D Regan,et al.  Visual field defects for vergence eye movements and for stereomotion perception. , 1986, Investigative ophthalmology & visual science.

[5]  Bruno G. Breitmeyer,et al.  Effects of isoluminant-background color on metacontrast and stroboscopic motion: Interactions between sustained (P) and transient (M) channels , 1990, Vision Research.

[6]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.

[7]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[8]  Bruno G. Breitmeyer,et al.  Metacontrast with masks varying in spatial frequency and wavelength , 1991, Vision Research.

[9]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[10]  W. Skrandies The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences , 1987 .

[11]  G. Lennerstrand,et al.  CENTRAL AND PERIPHERAL NORMAL CONTRAST SENSITIVITY FOR STATIC AND DYNAMIC SINUSOIDAL GRATINGS , 1983, Acta ophthalmologica.

[12]  E. Bizzi,et al.  The Cognitive Neurosciences , 1996 .

[13]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[15]  D. Dacey,et al.  Interindividual and topographical variation of L:M cone ratios in monkey retinas. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  S. Christman Local-global processing in the upper versus lower visual fields , 1993 .

[17]  M. Goodale,et al.  The visual brain in action , 1995 .

[18]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[19]  Melvyn A. Goodale,et al.  The cortical organization of visual perception and visuomotor control , 1995 .

[20]  F. Previc Functional specialization in the lower and upper visual fields in humans: Its ecological origins and neurophysiological implications , 1990, Behavioral and Brain Sciences.

[21]  S. Schein,et al.  Protan‐like spectral sensitivity of foveal Y ganglion cells of the retina of macaque monkeys. , 1980, The Journal of physiology.

[22]  D. Robinson,et al.  Parietal association cortex in the primate: sensory mechanisms and behavioral modulations. , 1978, Journal of neurophysiology.

[23]  Joshua I. Breier,et al.  Effects of background color on reaction time to stimuli varying in size and contrast: Inferences about human M channels , 1994, Vision Research.

[24]  B. Breitmeyer,et al.  Metacontrast reveals asymmetries at red–green isoluminance , 1991 .

[25]  E. DeYoe,et al.  Concurrent processing in the primate visual cortex. , 1995 .

[26]  F. M. D. Monasterio Properties of concentrically organized X and Y ganglion cells of macaque retina. , 1978 .

[27]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[28]  A. Cowey,et al.  Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey , 1984, Neuroscience.

[29]  B. Hylkema,et al.  EXAMINATION OF THE VISUAL FIELD BY DETERMINING THE FUSION FREQUENCY , 1942 .

[30]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[31]  D. Baylor,et al.  Spectral sensitivity of cones of the monkey Macaca fascicularis. , 1987, The Journal of physiology.

[32]  S. Christman,et al.  Upper and lower visual field differences in categorical and coordinate judgments , 1998 .