Nonlinear damping in a micromechanical oscillator

Nonlinear elastic effects play an important role in the dynamics of microelectromechanical systems (MEMS). A Duffing oscillator is widely used as an archetypical model of mechanical resonators with nonlinear elastic behavior. In contrast, nonlinear dissipation effects in micromechanical oscillators are often overlooked. In this work, we consider a doubly clamped micromechanical beam oscillator, which exhibits nonlinearity in both elastic and dissipative properties. The dynamics of the oscillator is measured in both frequency and time domains and compared to theoretical predictions based on a Duffing-like model with nonlinear dissipation. We especially focus on the behavior of the system near bifurcation points. The results show that nonlinear dissipation can have a significant impact on the dynamics of micromechanical systems. To account for the results, we have developed a continuous model of a geometrically nonlinear beam-string with a linear Voigt–Kelvin viscoelastic constitutive law, which shows a relation between linear and nonlinear damping. However, the experimental results suggest that this model alone cannot fully account for all the experimentally observed nonlinear dissipation, and that additional nonlinear dissipative processes exist in our devices.

[1]  Kimberly L. Turner,et al.  Tuning the dynamic behavior of parametric resonance in a micromechanical oscillator , 2003 .

[2]  M. Roukes,et al.  Stiction, adhesion energy, and the Casimir effect in micromechanical systems , 2001 .

[3]  R. Almog,et al.  High intermodulation gain in a micromechanical Duffing resonator , 2005 .

[4]  Miguel A. F. Sanjuán,et al.  Analytical Estimates of the Effect of nonlinear damping in some nonlinear oscillators , 2000, Int. J. Bifurc. Chaos.

[5]  M. Roukes,et al.  Metastability and the Casimir effect in micromechanical systems , 2000, cond-mat/0008096.

[6]  H. Ouakad,et al.  Nonlinear dynamics of a resonant gas sensor , 2010 .

[7]  Peter Hänggi,et al.  Fundamental aspects of quantum Brownian motion. , 2005, Chaos.

[8]  M. Cross,et al.  Elastic Wave Transmission at an Abrupt Junction in a Thin Plate, with Application to Heat Transport and Vibrations in Mesoscopic Systems , 2000, cond-mat/0011501.

[9]  Z. Lang,et al.  Frequency domain analysis of a dimensionless cubic nonlinear damping system subject to harmonic input , 2009 .

[10]  Balakumar Balachandran,et al.  Parametric identification of piezoelectric microscale resonators , 2006 .

[11]  A. K. Mallik,et al.  Stability Analysis of a Non-Linearly Damped Duffing Oscillator , 1994 .

[12]  M. Roukes,et al.  Noise processes in nanomechanical resonators , 2002 .

[13]  M. Roukes,et al.  Ultrasensitive nanoelectromechanical mass detection , 2004, cond-mat/0402528.

[14]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[15]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[16]  M. Roukes,et al.  Thermoelastic damping in micro- and nanomechanical systems , 1999, cond-mat/9909271.

[17]  Stefanie Gutschmidt,et al.  Internal resonances and bifurcations of an Array Below the First Pull-in Instability , 2010, Int. J. Bifurc. Chaos.

[18]  Marwan Bikdash,et al.  Melnikov analysis for a ship with a general roll-damping model , 1994, Nonlinear Dynamics.

[19]  Miguel A. F. Sanjuán,et al.  Energy dissipation in a nonlinearly damped Duffing oscillator , 2001 .

[20]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[21]  H. Craighead,et al.  Attogram detection using nanoelectromechanical oscillators , 2004 .

[22]  Eyal Buks,et al.  Signal amplification in a nanomechanical Duffing resonator via stochastic resonance , 2007 .

[23]  O. Gottlieb,et al.  Nonlinear Dynamics of a Taut String with Material Nonlinearities , 2001 .

[24]  Iu. L. Klimontovich A unified approach to kinetic description of processes in active systems , 1995 .

[25]  Michael L. Roukes,et al.  Energy dissipation in suspended micromechanical resonators at low temperatures , 2000 .

[26]  Germany,et al.  Mechanical mixing in nonlinear nanomechanical resonators , 2000 .

[27]  Harold G. Craighead,et al.  The pull-in behavior of electrostatically actuated bistable microstructures , 2008 .

[28]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[29]  Ali H. Nayfeh,et al.  An Experimental Investigation of Energy Transfer from a High- Frequency Mode to a Low-Frequency Mode in a Flexible Structure , 1995 .

[30]  Michael L. Roukes,et al.  Putting mechanics into quantum mechanics , 2005 .

[31]  Wenhua Zhang,et al.  Effect of cubic nonlinearity on auto-parametrically amplified resonant MEMS mass sensor , 2002 .

[32]  Peter Hänggi,et al.  Generalized langevin equations: A useful tool for the perplexed modeller of nonequilibrium fluctuations? , 1997 .

[33]  Bernard Yurke,et al.  Mass detection with a nonlinear nanomechanical resonator. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  H. B. Chan,et al.  Paths of fluctuation induced switching. , 2008, Physical review letters.

[35]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[36]  Bernard Yurke,et al.  Mass detection with a nonlinear nanomechanical resonator. , 2006 .

[37]  I. Wilson-Rae,et al.  Intrinsic dissipation in nanomechanical resonators due to phonon tunneling , 2007, 0710.0200.

[38]  D. Photiadis,et al.  Thermoelastic loss in microscale oscillators , 2002 .

[39]  L. Landau,et al.  statistical-physics-part-1 , 1958 .

[40]  S. Krylov,et al.  Pull-in Dynamics of an Elastic Beam Actuated by Continuously Distributed Electrostatic Force , 2004 .

[41]  Ron Lifshitz,et al.  Phonon-mediated dissipation in micro- and nano-mechanical systems , 2002 .

[42]  Ron Lifshitz,et al.  Nonlinear Dynamics of Nanomechanical and Micromechanical Resonators , 2009 .

[43]  A. Cleland,et al.  Nanometre-scale displacement sensing using a single electron transistor , 2003, Nature.

[44]  Michael J. Leamy,et al.  INTERNAL RESONANCES IN WHIRLING STRINGS INVOLVING LONGITUDINAL DYNAMICS AND MATERIAL NON-LINEARITIES , 2000 .

[45]  W. Hume-rothery Elasticity and Anelasticity of Metals , 1949, Nature.

[46]  A. Cleland,et al.  Noise-enabled precision measurements of a duffing nanomechanical resonator. , 2004, Physical review letters.

[47]  D. Greywall,et al.  Theory of amplifier-noise evasion in an oscillator employing a nonlinear resonator. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[48]  M. Roukes Nanoelectromechanical systems face the future , 2001 .

[49]  M. Feldman,et al.  Application of a Hilbert Transform-Based Algorithm for Parameter Estimation of a Nonlinear Ocean System Roll Model , 1997 .

[50]  Miguel A. F. Sanjuán,et al.  The Effect of Nonlinear Damping on the Universal Escape Oscillator , 1999 .

[51]  Axel Scherer,et al.  Nanowire-Based Very-High-Frequency Electromechanical Resonator , 2003 .

[52]  W. Q. Zhu,et al.  First-Passage Time of Duffing Oscillator under Combined Harmonic and White-Noise Excitations , 2003 .

[53]  Wenhua Zhang,et al.  Nonlinear Behavior of a Parametric Resonance-Based Mass Sensor , 2002 .

[54]  Gerard J. Milburn,et al.  Quantum electromechanical systems , 2001, SPIE Micro + Nano Materials, Devices, and Applications.

[55]  Steven W. Shaw,et al.  Tunable Microelectromechanical Filters that Exploit Parametric Resonance , 2005 .

[56]  M. Younis,et al.  A Study of the Nonlinear Response of a Resonant Microbeam to an Electric Actuation , 2003 .

[57]  P. Ullersma An exactly solvable model for Brownian motion: I. Derivation of the Langevin equation , 1966 .

[58]  R. Kubo The fluctuation-dissipation theorem , 1966 .

[59]  B. Yurke,et al.  Performance of Cavity-Parametric Amplifiers, Employing Kerr Nonlinearites, in the Presence of Two-Photon Loss , 2006, Journal of Lightwave Technology.

[60]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[61]  D. Arrowsmith,et al.  GEOMETRICAL METHODS IN THE THEORY OF ORDINARY DIFFERENTIAL EQUATIONS (Grundlehren der mathematischen Wissenschaften, 250) , 1984 .

[62]  小野 崇人,et al.  Effect of Ion Attachment on Mechanical Dissipation of a Resonator , 2005 .

[63]  M. Dykman,et al.  Critical exponent crossovers in escape near a bifurcation point. , 2004, Physical review letters.

[64]  D. Rugar,et al.  Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.

[65]  R Almog,et al.  Noise squeezing in a nanomechanical Duffing resonator. , 2007, Physical review letters.

[66]  D. Mounce,et al.  Magnetic resonance force microscopy , 2005, IEEE Instrumentation & Measurement Magazine.

[67]  N. C. MacDonald,et al.  Five parametric resonances in a microelectromechanical system , 1998, Nature.

[68]  Mallik,et al.  Role of nonlinear dissipation in soft Duffing oscillators. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  Xiao Liu,et al.  LOW-TEMPERATURE INTERNAL FRICTION IN METAL FILMS AND IN PLASTICALLY DEFORMED BULK ALUMINUM , 1999 .

[70]  P. Ullersma An exactly solvable model for Brownian motion: II. Derivation of the Fokker-Planck equation and the master equation , 1966 .

[71]  Oleg Kogan Controlling transitions in a Duffing oscillator by sweeping parameters in time. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[72]  Michael L. Roukes,et al.  Intrinsic dissipation in high-frequency micromechanical resonators , 2002 .

[73]  R. L. Badzey,et al.  Quantum friction in nanomechanical oscillators at millikelvin temperatures , 2005, cond-mat/0603691.

[74]  J. Rogers,et al.  Synchronization by nonlinear frequency pulling. , 2004, Physical review letters.

[75]  Ron Lifshitz,et al.  Response of parametrically driven nonlinear coupled oscillators with application to micromechanical and nanomechanical resonator arrays , 2003 .

[76]  B. Chui,et al.  Single spin detection by magnetic resonance force microscopy , 2004, Nature.

[77]  T. Kê Stress Relaxation across Grain Boundaries in Metals , 1947 .

[78]  Michael L. Roukes,et al.  Electrically tunable collective response in a coupled micromechanical array , 2002 .

[79]  R.B. Reichenbach,et al.  Third-order intermodulation in a micromechanical thermal mixer , 2005, Journal of Microelectromechanical Systems.

[80]  Todd H. Stievater,et al.  Measured limits of detection based on thermal-mechanical frequency noise in micromechanical sensors , 2007 .

[81]  M. Boltezar,et al.  AN APPROACH TO PARAMETER IDENTIFICATION FOR A SINGLE-DEGREE-OF-FREEDOM DYNAMICAL SYSTEM BASED ON SHORT FREE ACCELERATION RESPONSE , 2002 .

[82]  M. Roukes,et al.  Basins of attraction of a nonlinear nanomechanical resonator. , 2007, Physical review letters.

[83]  M. Roukes,et al.  Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems , 2003, physics/0309075.

[84]  L. Meirovitch Principles and techniques of vibrations , 1996 .

[85]  B. Camarota,et al.  Approaching the Quantum Limit of a Nanomechanical Resonator , 2004, Science.

[86]  Markus Aspelmeyer,et al.  Focus on Mechanical Systems at the Quantum Limit , 2008 .

[87]  T. Kenny,et al.  Quality factors in micron- and submicron-thick cantilevers , 2000, Journal of Microelectromechanical Systems.

[88]  M. Blencowe,et al.  Damping and decoherence of a nanomechanical resonator due to a few two-level systems , 2009, 0907.0431.

[89]  M. R. Hajj,et al.  Damping Identification Using Perturbation Techniques and Higher-Order Spectra , 2000 .