Piezoelectric friction–inertia actuator—a critical review and future perspective

This paper provides a comprehensive review of the literature regarding actuator systems which are based on the principle that combines the friction and inertia effect, named friction–inertia principle in this paper; such actuators is called friction–inertial actuator (FIA). The contribution of this paper lies in the generalization of various published (including patented) FIAs into a general principle with three specific principles. They are further taken as a framework upon which various published FIAs are classified and compared in terms of their principle, structure, and performance. In addition, this paper shows how this framework would allow for further innovation on FIAs. In the process of this generalization and classification, some confusion presented in the literature is also clarified. This paper also discusses further effort that may be taken to advance the friction–inertia actuation technology.

[1]  J. Garbini,et al.  The design and control of a three-dimensional piezoceramic tube scanner with an inertial slider , 2006 .

[2]  Yasuhiro Okamoto,et al.  Development of linear actuators using piezoelectric elements , 1998 .

[3]  H. Wulp,et al.  Compact, piezo‐driven, vacuum compatible rotation device , 1995 .

[4]  J W Li,et al.  Thermal effect on piezoelectric stick-slip actuator systems. , 2008, The Review of scientific instruments.

[5]  Toshiro Higuchi,et al.  A micropositioning device for precision automatic assembly using impact force of piezoelectric elements , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[6]  Wen-Jun Zhang,et al.  Integrated design of mechanical structure and control algorithm for a programmable four-bar linkage , 1999 .

[7]  R. Matsuda,et al.  Micro-step XY-stage using piezoelectric tube actuator , 1991, [1991] Proceedings. IEEE Micro Electro Mechanical Systems.

[8]  Oystein Fischer,et al.  A vertical piezoelectric inertial slider , 1990 .

[9]  S. Devasia,et al.  Precision tracking of driving wave forms for inertial reaction devices , 2005 .

[10]  M. Kurosawa,et al.  A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[11]  J. Hesselbach,et al.  Development of a two-degree-of-freedom piezoelectric rotary-linear actuator with high driving force and unlimited linear movement , 2006 .

[12]  Chris Pearson,et al.  A compact micropositioner for use in ultrahigh vacuum , 1993 .

[13]  Q. Zhang,et al.  Development and characterization of a novel piezoelectric-driven stick-slip actuator with anisotropic-friction surfaces , 2012 .

[14]  Modeling of directional friction on a fully lubricated surface with regular anisotropic asperities , 2011 .

[15]  Yoshihiro Nomura,et al.  Development of inertia driven micro robot with nano tilting stage for SEM operation , 2007 .

[16]  Rodolfo Rabe,et al.  Compact test platform for in-situ indentation and scratching inside a scanning electron microscope (SEM) , 2006 .

[17]  A. Buerkle,et al.  Flexible microrobotic system MINIMAN: design, actuation principle and control , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[18]  D. Pohl Dynamic piezoelectric translation devices , 1987 .

[19]  N. Agraït,et al.  Vertical inertial piezoelectric translation device for a scanning tunneling microscope , 1992 .

[20]  Chih-Liang Chu,et al.  A novel long-travel piezoelectric-driven linear nanopositioning stage , 2006 .

[21]  P. R. Ouyang,et al.  Micro-motion devices technology: The state of arts review , 2008 .

[22]  Manfred H. Jericho,et al.  Simple two-dimensional piezoelectric micropositioner for a scanning tunneling microscope , 1990 .

[23]  J K Gimzewski,et al.  Vertical inertial sliding drive for coarse and fine approaches in scanning probe microscopy. , 2007, The Review of scientific instruments.

[24]  H. Güntherodt,et al.  Piezoelectric inertial stepping motor with spherical rotor , 1992 .

[25]  Toshiro Higuchi,et al.  Three DOF parallel link mechanism utilizing smooth impact drive mechanism , 2002 .

[26]  Yutaka Yamagata,et al.  Improvement of Velocity of Impact Drive Mechanism by Controlling Friction. , 1992 .

[27]  Wolfgang Zesch,et al.  Inertial drives for micro- and nanorobots: two novel mechanisms , 1995, Other Conferences.

[28]  A. Bergander,et al.  Monolithic piezoelectric push-pull actuators for inertial drives , 2003, MHS2003. Proceedings of 2003 International Symposium on Micromechatronics and Human Science (IEEE Cat. No.03TH8717).

[29]  Joseph W. Lyding,et al.  Inertial tip translator for a scanning tunneling microscope , 1993 .

[30]  A. Volodin,et al.  Low‐temperature scanning tunneling microscope with a reliable piezoelectrical coarse approach mechanism , 1993 .

[31]  Naotake Mohri,et al.  Effect of lubrication on impact drive mechanism , 1998 .

[32]  Mathias Göken,et al.  Scanning tunneling microscopy in UHV with an X,Y,Z micropositioner , 1994 .

[33]  Urban Simu,et al.  Fabrication of monolithic piezoelectric drive units for a miniature robot , 2002 .

[34]  Yingzi Lin,et al.  ON THE FUNCTION-BEHAVIOR-STRUCTURE MODEL FOR DESIGN , 2011 .

[35]  Sergio Pellegrino,et al.  Inertial Stick-Slip Actuator for Active Control of Shape and Vibration , 1997 .

[36]  Long Chen,et al.  Design for control: A concurrent engineering approach for mechatronic systems design , 2001 .

[37]  Yi-Cheng Huang,et al.  Tracking control of a piezo-actuated stage based on frictional model , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[38]  Hannes Bleuler,et al.  Position feedback for microrobots based on scanning probe microscopy , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[39]  T. Y. Ng,et al.  Optimization of a piezoelectric ceramic actuator , 2000 .

[40]  Shuo-Hung Chang,et al.  Design and performance of a piezoelectric actuated precise rotary positioner , 2006 .

[41]  J. R. Greene,et al.  A simple dynamic piezoelectric X‐Y translation stage suitable for scanning probe microscopes , 1993 .

[42]  Kenji Uchino Piezoelectric ultrasonic motors: overview , 1998 .

[43]  P. Niedermann,et al.  Simple piezoelectric translation device , 1988 .

[44]  Elizabeth A. Croft,et al.  The reduction of stick-slip friction in hydraulic actuators , 2003 .

[45]  Alain Delchambre,et al.  Design and performances of a one-degree-of-freedom guided nano-actuator , 2003 .

[46]  Wenjun Chris Zhang,et al.  Towards a novel interface design framework: function-behavior-state paradigm , 2004, Int. J. Hum. Comput. Stud..

[47]  Tadashi Hattori,et al.  Micromanipulator utilizing a bending and expanding motion actuator , 1997, Proceedings IEEE The Tenth Annual International Workshop on Micro Electro Mechanical Systems. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots.

[48]  Madan M. Gupta,et al.  A New Compliant Mechanical Amplifier Based on a Symmetric Five-Bar Topology , 2008 .

[49]  Jean-Pol Vigneron,et al.  Vertical two‐dimensional piezoelectric inertial slider for scanning tunneling microscope , 1993 .

[50]  Reymond Clavel,et al.  Micropositioners for microscopy applications based on the stick-slip effect , 2000, MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530).

[51]  N. Suh Axiomatic Design of Mechanical Systems , 1995 .

[52]  S. H. Chang,et al.  A high resolution long travel friction-drive micropositioner with programmable step size , 1999 .

[53]  Kee-Joe Lim,et al.  Fabrication and characteristics of impact type ultrasonic motor , 2007 .

[54]  Lu Qiu-hong The Study on Miniature Inertial Piezo-actuators , 2004 .

[55]  Y. Maeno,et al.  Piezoelectrically driven rotator for use in high magnetic fields at low temperatures , 2001 .

[56]  Reymond Clavel,et al.  Stick and slip actuators (SSA) , 2000, SPIE Optics East.

[57]  Dae-Gab Gweon,et al.  Piezo-driven metrological multiaxis nanopositioner , 2001 .

[58]  Josep Samitier,et al.  From decimeter- to centimeter-sized mobile microrobots: the development of the MINIMAN system , 2001, Optics East.

[59]  Jean-Marc Breguet,et al.  Stick and slip actuators: design, control, performances and applications , 1998, MHA'98. Proceedings of the 1998 International Symposium on Micromechatronics and Human Science. - Creation of New Industry - (Cat. No.98TH8388).

[60]  V. N. Yakimov Vertical ramp-actuated inertial micropositioner with a rolling-balls guide , 1997 .

[61]  W. von Münch,et al.  Piezoelectric bimorph cantilever for actuating and sensing applications , 1998 .

[62]  Zhang Hai Piezo impact drive mechanism for precise approach and manipulation , 2000 .

[63]  Dong-Heon Kang Modeling of the piezoelectric-driven stick-slip actuators , 2007 .

[64]  龍一 吉田,et al.  スムーズインパクト駆動機構(SIDM)の開発 , 1999 .

[65]  Frank Claeyssen,et al.  Stepping Piezoelectric Actuators Based on APAs , 2008 .

[66]  E. Rabinowicz Stick and Slip , 1956 .

[67]  Manfred H. Jericho,et al.  A vertical/horizontal two‐dimensional piezoelectric driven inertial slider micropositioner for cryogenic applications , 1992 .