IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era

IQ-TREE (http://www.iqtree.org) is a user-friendly and widely used software package for phylogenetic inference using maximum likelihood. Since the release of version 1 in 2014, we have continuously expanded IQ-TREE to integrate a plethora of new models of sequence evolution and efficient computational approaches of phylogenetic inference to deal with genomic data. Here, we describe notable features of IQ-TREE version 2 and highlight the key advantages over other software.

[1]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[2]  Olivier Gascuel,et al.  Modeling protein evolution with several amino acid replacement matrices depending on site rates. , 2012, Molecular biology and evolution.

[3]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[4]  O. Gascuel,et al.  Phylogenetic mixture models for proteins , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  A. von Haeseler,et al.  UFBoot2: Improving the Ultrafast Bootstrap Approximation , 2017, bioRxiv.

[6]  Tandy J. Warnow,et al.  ASTRAL: genome-scale coalescent-based species tree estimation , 2014, Bioinform..

[7]  O. Gascuel,et al.  Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. , 2006, Systematic biology.

[8]  O Gascuel,et al.  BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. , 1997, Molecular biology and evolution.

[9]  O. Gascuel,et al.  Accounting for solvent accessibility and secondary structure in protein phylogenetics is clearly beneficial. , 2010, Systematic biology.

[10]  E. Susko,et al.  Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation , 2018, Systematic biology.

[11]  Alexey M. Kozlov,et al.  RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference , 2018, bioRxiv.

[12]  Ziheng Yang Estimating the pattern of nucleotide substitution , 1994, Journal of Molecular Evolution.

[13]  Arndt von Haeseler,et al.  Consequences of Common Topological Rearrangements for Partition Trees in Phylogenomic Inference , 2015, J. Comput. Biol..

[14]  Mike Steel,et al.  Terraces in Phylogenetic Tree Space , 2011, Science.

[15]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[16]  Olga Chernomor,et al.  Terrace Aware Data Structure for Phylogenomic Inference from Supermatrices , 2016, Systematic biology.

[17]  O. Gascuel,et al.  Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-based Approximation Schemes , 2011, Systematic biology.

[18]  Antonis Rokas,et al.  Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets , 2017, bioRxiv.

[19]  Hidetoshi Shimodaira,et al.  Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference , 1999, Molecular Biology and Evolution.

[20]  Minh Anh Nguyen,et al.  Ultrafast Approximation for Phylogenetic Bootstrap , 2013, Molecular biology and evolution.

[21]  Masami Hasegawa,et al.  CONSEL: for assessing the confidence of phylogenetic tree selection , 2001, Bioinform..

[22]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[23]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[24]  Francesco Asnicar,et al.  Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 , 2019, Nature Biotechnology.

[25]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[26]  Trevor Bedford,et al.  Nextstrain: real-time tracking of pathogen evolution , 2017, bioRxiv.

[27]  W. Li,et al.  Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. , 1995, Molecular biology and evolution.

[28]  S. Kelly,et al.  OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy , 2015, Genome Biology.

[29]  Alexandros Stamatakis,et al.  Two C++ libraries for counting trees on a phylogenetic terrace , 2018, Bioinform..

[30]  K. Strimmer,et al.  Likelihood-mapping: a simple method to visualize phylogenetic content of a sequence alignment. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[32]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[33]  Jeremy M. Brown,et al.  A Phylogenomic Approach to Vertebrate Phylogeny Supports a Turtle-Archosaur Affinity and a Possible Paraphyletic Lissamphibia , 2012, PloS one.

[34]  J. Gagneur,et al.  TRADING MEMORY FOR RUNNING TIME IN PHYLOGENETIC LIKELIHOOD COMPUTATIONS , 2011 .

[35]  N. Bean,et al.  GHOST: Recovering Historical Signal from Heterotachously-evolved Sequence Alignments , 2017, bioRxiv.

[36]  A. von Haeseler,et al.  Polymorphism-Aware Species Trees with Advanced Mutation Models, Bootstrap, and Rate Heterogeneity , 2018, bioRxiv.

[37]  Nicola De Maio,et al.  Reversible polymorphism-aware phylogenetic models and their application to tree inference. , 2016, Journal of theoretical biology.

[38]  Anne-Mieke Vandamme,et al.  The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing , 2009 .

[39]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[40]  Bui Quang Minh,et al.  New Methods to Calculate Concordance Factors for Phylogenomic Datasets , 2018, bioRxiv.

[41]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[42]  Martin Vingron,et al.  TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing , 2002, Bioinform..

[43]  Bastien Boussau,et al.  Efficient likelihood computations with nonreversible models of evolution. , 2006, Systematic biology.

[44]  K. Strimmer,et al.  Inferring confidence sets of possibly misspecified gene trees , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  J. Sumner,et al.  A New Hierarchy of Phylogenetic Models Consistent with Heterogeneous Substitution Rates , 2014, Systematic biology.

[46]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.