Inhomogeneous Copper Diffusion in NIF Beryllium Ablator Capsules

Abstract The National Ignition Facility point design uses a five-layer capsule to modify the X-ray absorption in order to achieve optimized shock timing. A stepwise copper dopant design defines the layer structure; however, the as-deposited Cu distribution is significantly altered during the CH mandrel removal by pyrolysis. The changes are significant: (a) Cu diffuses on average several microns, a distance more than an order of magnitude larger than predicted from the bulk diffusion data, and (b) the Cu distribution, as a result of diffusion, is highly heterogeneous, introducing a local variation of [approximately]0.06 at. % near the original layer interface. In this study, we developed quantitative techniques to measure Cu diffusion and explored its correlation to beryllium microstructures. Plausible diffusion mechanisms and mitigation methods will be discussed. These findings will enable more accurate evaluation of the expected target performance.

[1]  Piero Pianetta,et al.  Transmission X‐ray microscopy for full‐field nano imaging of biomaterials , 2011, Microscopy research and technique.

[2]  Peter M. Celliers,et al.  Capsule implosion optimization during the indirect-drive National Ignition Campaign , 2010 .

[3]  A. Benninghoven,et al.  High mass resolution surface imaging with a time‐of‐flight secondary ion mass spectroscopy scanning microprobe , 1991 .

[4]  D. Nelson,et al.  Chemometric and statistical analyses of ToF‐SIMS spectra of increasingly complex biological samples , 2007 .

[5]  Dominique Drouin,et al.  CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. , 2007, Scanning.

[6]  Richard A. London,et al.  Progress towards ignition on the National Ignition Facility , 2011 .

[7]  L. Tanner,et al.  The Be−Cu (Beryllium-Copper) system , 1987 .

[8]  J. Gelb,et al.  Full-field transmission x-ray microscopy at SSRL , 2009 .

[9]  L. J. Atherton,et al.  The experimental plan for cryogenic layered target implosions on the National Ignition Facility--The inertial confinement approach to fusion , 2011 .

[10]  Edward I. Moses,et al.  Ignition on the National Ignition Facility , 2007 .

[11]  K. A. Moreno,et al.  Quantitative Radiography: Film Model Calibration and Dopant/Impurity Measurement in ICF Ablators , 2007 .

[12]  D. Nelson,et al.  Distinguishing monosaccharide stereo- and structural isomers with TOF-SIMS and multivariate statistical analysis. , 2006, Analytical chemistry.

[13]  A. Nikroo,et al.  Nondestructive Quantitative Dopant Profiling Technique by Contact Radiography , 2006 .

[14]  J. R. Manning,et al.  Diffusion in Copper and Copper Alloys, Part III. Diffusion in Systems Involving Elements of the Groups IA, IIA, IIIB, IVB, VB, VIB, and VIIB, , 1975 .

[15]  A. Nikroo,et al.  Characterization of Thin Copper Diffusion Barrier Layer in Beryllium Capsules , 2013 .

[16]  David C. Joy,et al.  Special Topics in Scanning Electron Microscopy , 2003 .

[17]  A. Nikroo,et al.  Thin Oxides as a Copper Diffusion Barrier for NIF Beryllium Ablator Capsules , 2013 .

[18]  D. K. Bradley,et al.  Capsule performance optimization in the national ignition campaign , 2009 .

[19]  G. Lawes,et al.  Scanning Electron Microscopy and X-Ray Microanalysis , 1987 .

[20]  A. Nikroo,et al.  Element-Specific Profiling for ICF Ablator Capsules with Mixed Dopant and Impurities , 2009 .

[21]  William C. Giessen The Be−Cu (Beryllium-Copper) system , 1980 .

[22]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .