Boundary behavior of k-convex solutions for singular k-Hessian equations

Abstract We discuss the existence and boundary behavior of k -convex solution to the singular k -Hessian problem S k ( D 2 u ( x ) ) = b ( x ) f ( − u ( x ) ) , x ∈ Ω , u ( x ) = 0 , x ∈ ∂ Ω , where S k ( D 2 u ) ( k ∈ { 1 , 2 , … , n } ) is the k -Hessian operator, Ω ⊂ R n ( n ≥ 2 ) is a smooth bounded strictly convex domain. Here the weight function b ( x ) is not necessarily bounded on ∂ Ω . Another interest is that f ( u ) → ∞ as u → 0 . Our approach mainly relies on Karamata’s regular variation theory and the construction of suitable sub- and super-solutions.

[1]  Zhijun Zhang,et al.  The boundary behavior of the unique solution to a singular Dirichlet problem , 2012 .

[2]  Dirichlet duality and the nonlinear Dirichlet problem , 2007 .

[3]  H. Lawson,et al.  Removable singularities for nonlinear subequations , 2013, 1303.0437.

[4]  Xu-jia Wang,et al.  A variational theory of the Hessian equation , 2001 .

[5]  L. Caffarelli,et al.  Some Remarks on Singular Solutions of Nonlinear Elliptic Equations III: Viscosity Solutions Including Parabolic Operators , 2011, 1101.2833.

[6]  Some Remarks on Singular Solutions of Nonlinear Elliptic Equations III: Viscosity Solutions Including Parabolic Operators , 2011 .

[7]  Shing-Tung Yau,et al.  On the regularity of the monge‐ampère equation det (∂2 u/∂xi ∂xj) = f(x, u) , 1977 .

[8]  J. Bao,et al.  Necessary and sufficient conditions on existence and convexity of solutions for Dirichlet problems of Hessian equations on exterior domains , 2012 .

[9]  Yong Huang,et al.  BOUNDARY ASYMPTOTICAL BEHAVIOR OF LARGE SOLUTIONS TO HESSIAN EQUATIONS , 2010 .

[10]  J. Urbas On the existence of nonclassical solutions for two classes of fully nonlinear elliptic equations , 1990 .

[11]  Yihong Du,et al.  Sharp conditions for the existence of boundary blow-up solutions to the Monge–Ampère equation , 2018 .

[12]  A. Vitolo,et al.  On the inequality $$F(x,D^2u)\ge f(u) +g(u)\, |Du|^q$$F(x,D2u)≥f(u)+g(u)|Du|q , 2016 .

[13]  Zhijun Zhang,et al.  Large solutions to the Monge–Ampère equations with nonlinear gradient terms: Existence and boundary behavior , 2018 .

[14]  Luis A. Caffarelli,et al.  The Dirichlet problem for nonlinear second-order elliptic equations I , 1984 .

[15]  Alan C. Lazer,et al.  On a singular nonlinear elliptic boundary-value problem , 1991 .

[16]  Huaiyu Jian,et al.  Hessian equations with Infinite Dirichlet Boundary Value , 2006, math/0611907.

[17]  On the Symmetry of Solutions to a k-Hessian Type Equation , 2013 .

[18]  J. Karamata,et al.  Sur un mode de croissance régulière. Théorèmes fondamentaux , 1933 .

[19]  Chao-Jiang Xu,et al.  C1,1 solution of the Dirichlet problem for degenerate k-Hessian equations , 2013, 1309.4204.

[20]  Michael G. Crandall,et al.  On a dirichlet problem with a singular nonlinearity , 1977 .

[21]  A. Vitolo,et al.  Removable singularities for degenerate elliptic Pucci operators , 2016, Advances in Differential Equations.

[22]  Limei Dai,et al.  On uniqueness and existence of viscosity solutions to Hessian equations in exterior domains , 2011 .

[23]  N. Trudinger,et al.  The Monge-Ampµere equation and its geometric applications , 2008 .

[24]  Zhijun Zhang,et al.  The asymptotic behaviour of the unique solution for the singular Lane–Emden–Fowler equation , 2005 .

[25]  H. Lawson,et al.  Geometric plurisubharmonicity and convexity - an introduction , 2011, 1111.3875.

[26]  Vicenţiu D. Rădulescu,et al.  Bifurcation and asymptotics for the Lane–Emden–Fowler equation , 2003 .

[27]  Kazuhiro Takimoto,et al.  A Bernstein type theorem for parabolic k-Hessian equations , 2015 .

[28]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[29]  A. Lazer McKenna On singular boundary value problems for the Monge - Ampere operator , 1996 .

[30]  Isoperimetric estimates for eigenfunctions of Hessian operators , 2009 .

[31]  A. Vitolo Removable singularities for degenerate elliptic equations without conditions on the growth of the solution , 2017 .

[32]  Boundary behavior of solutions of Monge–Ampère equations with singular righthand sides☆ , 2017 .

[33]  Weighted eigenvalue problems for Hessian equations , 2010 .

[34]  Meiqiang Feng,et al.  Boundary blow-up solutions to the k-Hessian equation with singular weights , 2021, Appl. Math. Lett..

[35]  K. Tso On a real Monge—Ampère functional , 1990 .

[36]  Plurisubharmonicity in a General Geometric Context , 2008, 0804.1316.

[37]  L. Nirenberg,et al.  Partial Differential Equations Invariant under Conformal or Projective Transformations , 1974 .

[38]  Bo Guan,et al.  The dirichlet problem for a class of fully nonlinear elliptic equations , 1994 .

[39]  Upper bounds for the eigenvalues of Hessian equations , 2012, 1209.0877.

[40]  Paolo Salani,et al.  Boundary blow-up problems for Hessian equations , 1998 .

[41]  Ahmed Mohammed,et al.  Existence and estimates of solutions to a singular Dirichlet problem for the Monge–Ampère equation , 2008 .