Sectorial mutagenesis by transposable elements

[1]  W. Belknap,et al.  Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  D. Baltimore,et al.  Chromatin remodeling directly activates V(D)J recombination. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[3]  M. Batzer,et al.  Alu repeats and human disease. , 1999, Molecular genetics and metabolism.

[4]  T. Eickbush,et al.  The age and evolution of non-LTR retrotransposable elements. , 1999, Molecular biology and evolution.

[5]  S. Lewis Evolution of Immunoglobulin and T‐Cell Receptor Gene Assembly , 1999, Annals of the New York Academy of Sciences.

[6]  J. Shapiro Genome System Architecture and Natural Genetic Engineering in Evolution , 1999, Annals of the New York Academy of Sciences.

[7]  T. Heidmann,et al.  Taming of transposable elements by homology-dependent gene silencing , 1999, Nature Genetics.

[8]  R. Wilson,et al.  How the worm was won. The C. elegans genome sequencing project. , 1999, Trends in genetics : TIG.

[9]  G Bernardi,et al.  CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families. , 1998, Gene.

[10]  G. Bernardi,et al.  Distribution of the mammalian‐wide interspersed repeats (MIRs) in the isochores of the human genome , 1998, FEBS letters.

[11]  C. Schmid,et al.  Does SINE evolution preclude Alu function? , 1998, Nucleic acids research.

[12]  M. Gellert,et al.  DNA Transposition by the RAG1 and RAG2 Proteins A Possible Source of Oncogenic Translocations , 1998, Cell.

[13]  D. Roth,et al.  VDJ Recombination: A Transposase Goes to Work , 1998 .

[14]  David G. Schatz,et al.  Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system , 1998, Nature.

[15]  C. Woese The universal ancestor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[16]  J. V. Moran,et al.  The impact of L1 retrotransposons on the human genome , 1998, Nature Genetics.

[17]  J. Jurka,et al.  Repeats in genomic DNA: mining and meaning. , 1998, Current opinion in structural biology.

[18]  R. J. Herrera,et al.  Effects of Alu insertions on gene function , 1998, Electrophoresis.

[19]  Y. Miki Retrotransposal integration of mobile genetic elements in human diseases , 1998, Journal of Human Genetics.

[20]  S J de Souza,et al.  Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  N. Okada,et al.  SINEs and LINEs share common 3' sequences: a review. , 1997, Gene.

[22]  A. Bird Does DNA methylation control transposition of selfish elements in the germline? , 1997, Trends in genetics : TIG.

[23]  T. Heidmann,et al.  Functional differences between the human LINE retrotransposon and retroviral reverse transcriptases for in vivo mRNA reverse transcription , 1997, The EMBO journal.

[24]  D. Jackson Chromatin domains and nuclear compartments: establishing sites of gene expression in eukaryotic nuclei , 1997, Molecular Biology Reports.

[25]  C. Walsh,et al.  Cytosine methylation and the ecology of intragenomic parasites. , 1997, Trends in genetics : TIG.

[26]  M. G. Kidwell,et al.  Transposable elements as sources of variation in animals and plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  E. Sibille,et al.  Sensitivity to Jerky Gene Dosage Underlies Epileptic Seizures in Mice , 1997, The Journal of Neuroscience.

[28]  D. Hartl,et al.  What restricts the activity of mariner-like transposable elements. , 1997, Trends in genetics : TIG.

[29]  T R Hughes,et al.  Reverse transcriptase motifs in the catalytic subunit of telomerase. , 1997, Science.

[30]  P. Warburton,et al.  Centromeres, CENP-B and Tigger too. , 1997, Trends in genetics : TIG.

[31]  J. Jurka,et al.  Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  M. Baum,et al.  A Centromere DNA-binding Protein from Fission Yeast Affects Chromosome Segregation and Has Homology to Human CENP-B , 1997, The Journal of cell biology.

[33]  A. Smit,et al.  The origin of interspersed repeats in the human genome. , 1996, Current opinion in genetics & development.

[34]  H. Robertson Members of the pogo superfamily of DNA-mediated transposons in the human genome , 1996, Molecular and General Genetics MGG.

[35]  J. Buckley,et al.  The rate of CpG mutation in Alu repetitive elements within the p53 tumor suppressor gene in the primate germline. , 1996, Journal of molecular biology.

[36]  A. Smit,et al.  Tiggers and DNA transposon fossils in the human genome. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Buzsáki,et al.  Epileptic seizures caused by inactivation of a novel gene, jerky, related to centromere binding protein–B in transgenic mice , 1995, Nature Genetics.

[38]  L. Duret,et al.  Statistical analysis of vertebrate sequences reveals that long genes are scarce in GC-rich isochores , 1995, Journal of Molecular Evolution.

[39]  J. McDonald,et al.  Transposable elements: possible catalysts of organismic evolution. , 1995, Trends in ecology & evolution.

[40]  A. Smit,et al.  Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. , 1995, Journal of molecular biology.

[41]  Jerzy Jurka,et al.  Ubiquitous mammalian-wide interspersed repeats (MIRs) are molecular fossils from the mesozoic era , 1995, Nucleic Acids Res..

[42]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[43]  V. Pirrotta,et al.  White gene expression, repressive chromatin domains and homeotic gene regulation in Drosophila , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[44]  M. Zuker,et al.  Testing the exon theory of genes: the evidence from protein structure. , 1994, Science.

[45]  J. Palmer,et al.  Origin of introns–early or late? , 1994, Nature.

[46]  Sudhir Kumar,et al.  MEGA: Molecular Evolutionary Genetics Analysis software for microcomputers , 1994, Comput. Appl. Biosci..

[47]  G. Holmquist,et al.  Chromosome bands, their chromatin flavors, and their functional features. , 1992, American journal of human genetics.

[48]  Aleksandar Milosavljevic,et al.  Reconstruction and analysis of human alu genes , 1991, Journal of Molecular Evolution.

[49]  D C Ward,et al.  Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[50]  L. Manuelidis,et al.  SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size , 1989, Chromosoma.

[51]  T. Smith,et al.  A fundamental division in the Alu family of repeated sequences. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Britten,et al.  Sources and evolution of human Alu repeated sequences. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Mary C. Rykowski,et al.  Human genome organization: Alu, LINES, and the molecular structure of metaphase chromosome bands , 1988, Cell.

[54]  T Darden,et al.  Evolution and extinction of transposable elements in Mendelian populations. , 1985, Genetics.

[55]  G Bernardi,et al.  The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[56]  W. Doolittle,et al.  Selfish genes, the phenotype paradigm and genome evolution , 1980, Nature.

[57]  F. Crick,et al.  Selfish DNA: the ultimate parasite , 1980, Nature.

[58]  A. Smit,et al.  Tiggers and other DNA transposon fossils in the human genome ( interspersed repeats / pogo / mariner / Tcl / centromere protein CENP-B ) , 2005 .

[59]  R. J. Herrera,et al.  Genome canalization: the coevolution of transposable and interspersed repetitive elements with single copy DNA , 2004, Genetica.

[60]  K. Lowenhaupt,et al.  Evolutionary links between telomeres and transposable elements , 2004, Genetica.

[61]  J. Jurka,et al.  Identification of new medium reiteration frequency repeats in the genomes of Primates, Rodentia and Lagomorpha , 2004, Genetica.

[62]  D. Ward,et al.  Chromosomal and nuclear distribution of the HindIII 1.9-kb human DNA repeat segment , 2004, Chromosoma.

[63]  P. Dimitri Constitutive heterochromatin and transposable elements in Drosophila melanogaster , 2004, Genetica.

[64]  V. Kapitonov,et al.  The age of Alu subfamilies , 2004, Journal of Molecular Evolution.

[65]  R. Baker,et al.  Transposable elements and the evolution of genome organization in mammals , 2004, Genetica.

[66]  M. Matzke,et al.  Epigenetic silencing of plant transgenes as a consequence of diverse cellular defence responses , 1998, Cellular and Molecular Life Sciences CMLS.

[67]  J. Jurka,et al.  MER53, a non-autonomous DNA transposon associated with a variety of functionally related defense genes in the human genome. , 1998, DNA sequence : the journal of DNA sequencing and mapping.

[68]  V. Corces,et al.  Transposable element-host interactions: regulation of insertion and excision. , 1997, Annual review of genetics.

[69]  June Corwin,et al.  Telomerase Catalytic Subunit Homologs from Fission Yeast and Human , 1997 .

[70]  W. Bickmore,et al.  The relationship between gene density and chromosome banding patterns in mammalian nuclei , 1997 .

[71]  R. von Sternberg The role of constrained self-organization in genome structural evolution. , 1996, Acta Biotheoretica.

[72]  G. Bernardi,et al.  The human genome: organization and evolutionary history. , 1995, Annual review of genetics.

[73]  W. Doolittle,et al.  Introns, the broken transposons. , 1994, Society of General Physiologists series.

[74]  A. Stoltzfus Origin of introns–early or late? , 1994, Nature.

[75]  J. McDonald,et al.  Evolution and consequences of transposable elements. , 1993, Current opinion in genetics & development.

[76]  R. Worton,et al.  Partial gene duplication as a cause of human disease , 1992, Human mutation.

[77]  G. Bernardi,et al.  The isochore organization of the human genome. , 1989, Annual review of genetics.