Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4

[1]  Cheng Hu,et al.  A Genome-Wide Association Study Identifies GRK5 and RASGRP1 as Type 2 Diabetes Loci in Chinese Hans , 2012, Diabetes.

[2]  M. Jarvelin,et al.  Highly interconnected genes in disease-specific networks are enriched for disease-associated polymorphisms , 2012, Genome Biology.

[3]  Inês Barroso,et al.  Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes , 2012, Nature Genetics.

[4]  Wei Lu,et al.  Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians , 2011, Nature Genetics.

[5]  Tien Yin Wong,et al.  Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci , 2011, Nature Genetics.

[6]  Weiqing Wang,et al.  A Genome-Wide Association Study Confirms Previously Reported Loci for Type 2 Diabetes in Han Chinese , 2011, PloS one.

[7]  E. Marcotte,et al.  Prioritizing candidate disease genes by network-based boosting of genome-wide association data. , 2011, Genome research.

[8]  Teresa M. Przytycka,et al.  Identifying Causal Genes and Dysregulated Pathways in Complex Diseases , 2011, PLoS Comput. Biol..

[9]  Simon C. Potter,et al.  The Architecture of Gene Regulatory Variation across Multiple Human Tissues: The MuTHER Study , 2011, PLoS genetics.

[10]  Mark I McCarthy,et al.  Genomics, type 2 diabetes, and obesity. , 2010, The New England journal of medicine.

[11]  O. Cinek,et al.  Lack of PAX4 mutations in 53 Czech MODYX families , 2010, Diabetic medicine : a journal of the British Diabetic Association.

[12]  K. Xiang,et al.  Variants from GIPR, TCF7L2, DGKB, MADD, CRY2, GLIS3, PROX1, SLC30A8 and IGF1 Are Associated with Glucose Metabolism in the Chinese , 2010, PloS one.

[13]  Stephen C. J. Parker,et al.  Global epigenomic analysis of primary human pancreatic islets provides insights into type 2 diabetes susceptibility loci. , 2010, Cell metabolism.

[14]  Y. J. Kim,et al.  Identification of New Genetic Risk Variants for Type 2 Diabetes , 2010, PLoS genetics.

[15]  J. Chan,et al.  Common Polymorphisms in MTNR1B, G6PC2 and GCK Are Associated with Increased Fasting Plasma Glucose and Impaired Beta-Cell Function in Chinese Subjects , 2010, PloS one.

[16]  Ayellet V. Segrè,et al.  Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.

[17]  Rick Twee-Hee Ong,et al.  varLD: a program for quantifying variation in linkage disequilibrium patterns between populations , 2010, Bioinform..

[18]  K. Dou,et al.  Prevalence of diabetes among men and women in China. , 2010, The New England journal of medicine.

[19]  Vishal Sharma,et al.  Diabetes in Asia , 2010, The Lancet.

[20]  Fuu-Jen Tsai,et al.  A Genome-Wide Association Study Identifies Susceptibility Variants for Type 2 Diabetes in Han Chinese , 2010, PLoS genetics.

[21]  Karen L. Mohlke,et al.  A map of open chromatin in human pancreatic islets , 2010, Nature Genetics.

[22]  T. Wong,et al.  Polymorphisms identified through genome-wide association studies and their associations with type 2 diabetes in Chinese, Malays, and Asian-Indians in Singapore. , 2010, The Journal of clinical endocrinology and metabolism.

[23]  J. Shaw,et al.  Global estimates of the prevalence of diabetes for 2010 and 2030. , 2010, Diabetes research and clinical practice.

[24]  Reedik Mägi,et al.  GWAMA: software for genome-wide association meta-analysis , 2010, BMC Bioinformatics.

[25]  Cheng Hu,et al.  PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 Are Associated with Type 2 Diabetes in a Chinese Population , 2009, PloS one.

[26]  P. Deloukas,et al.  Common Regulatory Variation Impacts Gene Expression in a Cell Type–Dependent Manner , 2009, Science.

[27]  Weiping Jia,et al.  Diabetes in Asia: epidemiology, risk factors, and pathophysiology. , 2009, JAMA.

[28]  Taesung Park,et al.  A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits , 2009, Nature Genetics.

[29]  K. Xiang,et al.  Variations in KCNQ1 are associated with type 2 diabetes and beta cell function in a Chinese population , 2009, Diabetologia.

[30]  G. Abecasis,et al.  Genotype imputation. , 2009, Annual review of genomics and human genetics.

[31]  T. Hansen,et al.  SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations , 2008, Nature Genetics.

[32]  L. Groop,et al.  Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus , 2008, Nature Genetics.

[33]  H. Shin,et al.  Implication of Genetic Variants Near TCF7L2, SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in Type 2 Diabetes and Obesity in 6,719 Asians , 2008, Diabetes.

[34]  M. McCarthy,et al.  Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes , 2008, Nature Genetics.

[35]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[36]  K. Nanjo,et al.  PAX4 mutations in Thais with maturity onset diabetes of the young. , 2007, The Journal of clinical endocrinology and metabolism.

[37]  T. Murohara,et al.  Aberrant DNA demethylation in promoter region and aberrant expression of mRNA of PAX4 gene in hematologic malignancies. , 2006, Leukemia research.

[38]  Toru Egashira,et al.  The Arg121Trp variant in PAX4 gene is associated with beta-cell dysfunction in Japanese subjects with type 2 diabetes mellitus. , 2006, Metabolism: clinical and experimental.

[39]  M. Perugini,et al.  The trans-Golgi network GRIP-domain proteins form α-helical homodimers , 2005 .

[40]  D. Kemp,et al.  Minireview: transcriptional regulation in pancreatic development. , 2005, Endocrinology.

[41]  M. Broadhurst,et al.  The p100 EBNA-2 coactivator: a highly conserved protein found in a range of exocrine and endocrine cells and tissues in cattle. , 2005, Biochimica et biophysica acta.

[42]  M. Perugini,et al.  The trans-Golgi network GRIP-domain proteins form alpha-helical homodimers. , 2005, The Biochemical journal.

[43]  C. Wollheim,et al.  The diabetes-linked transcription factor PAX4 promotes β-cell proliferation and survival in rat and human islets , 2004, The Journal of cell biology.

[44]  S. Leal,et al.  PAX4 gene variations predispose to ketosis-prone diabetes. , 2004, Human molecular genetics.

[45]  S. Hunt,et al.  Genetic variation near the hepatocyte nuclear factor-4 alpha gene predicts susceptibility to type 2 diabetes. , 2004, Diabetes.

[46]  L. Sussel,et al.  The concerted activities of Pax4 and Nkx2.2 are essential to initiate pancreatic beta-cell differentiation. , 2004, Developmental biology.

[47]  T. Sanke,et al.  A missense mutation of Pax4 gene (R121W) is associated with type 2 diabetes in Japanese. , 2001, Diabetes.

[48]  M. Patel,et al.  Use of a cDNA array for the identification of genes induced in islets of suckling rats by a high-carbohydrate nutritional intervention. , 2001, Diabetes.

[49]  R. Haun,et al.  Cloning and characterization of the human ADP-ribosylation factor 4 gene. , 1999, Gene.

[50]  C. Dina,et al.  No evidence of linkage or diabetes-associated mutations in the transcription factors BETA2/NEUROD1 and PAX4 in Type II diabetes in France , 1999, Diabetologia.

[51]  N. Laird,et al.  Meta-analysis in clinical trials. , 1986, Controlled clinical trials.