Intra-ER sorting of the peroxisomal membrane protein Pex3 relies on its luminal domain

Summary Pex3 is an evolutionarily conserved type III peroxisomal membrane protein required for peroxisome formation. It is inserted into the ER membrane and sorted via an ER subdomain (the peroxisomal ER, or pER) to peroxisomes. By constructing chimeras between Pex3 and the type III ER membrane protein Sec66, we have been able to separate the signals that mediate insertion of Pex3 into the ER from those that mediate sorting within the ER to the pER subdomain. The N-terminal 17-amino acid segment of Pex3 contains two signals that are each sufficient for sorting to the pER: a chimeric protein containing the N-terminal domain of Pex3 fused to the transmembrane and cytoplasmic segments of Sec66 sorts to the pER in wild type cells, and does not colocalise with peroxisomes. Subsequent transport to existing peroxisomes requires the Pex3 transmembrane segment. When expressed in Drosophila S2R+ cells, ScPex3 targeting to peroxisomes is dependent on the intra-ER sorting signals in the N-terminal segment. The N-terminal segments of both human and Drosophila Pex3 contain intra-ER sorting information and can replace that of ScPex3. Our analysis has uncovered the signals within Pex3 required for the various steps of its transport to peroxisomes. Our generation of versions of Pex3 that are blocked at each stage along its transport pathway provides a tool to dissect the mechanism, as well as the molecular machinery required at each step of the pathway.

[1]  J. Neefjes,et al.  Spatiotemporal analysis of organelle and macromolecular complex inheritance , 2012, Proceedings of the National Academy of Sciences.

[2]  A. Motley,et al.  Atg36: the Saccharomyces cerevisiae receptor for pexophagy. , 2012, Autophagy.

[3]  A. Motley,et al.  Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae , 2012, The EMBO journal.

[4]  H. Tabak,et al.  Biochemically Distinct Vesicles from the Endoplasmic Reticulum Fuse to Form Peroxisomes , 2012, Cell.

[5]  K. Kalies,et al.  Peroxisome Formation Requires the Endoplasmic Reticulum Channel Protein Sec61 , 2012, Traffic.

[6]  A. Motley,et al.  Peroxisome biogenesis: recent advances. , 2011, Current opinion in cell biology.

[7]  T. Simmen,et al.  Urban planning of the endoplasmic reticulum (ER): How diverse mechanisms segregate the many functions of the ER , 2011, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research.

[8]  S. Subramani,et al.  Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum , 2011, Proceedings of the National Academy of Sciences.

[9]  R. Erdmann,et al.  Protein import machineries of peroxisomes. , 2011, Biochimica et biophysica acta.

[10]  R. Schekman,et al.  A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum , 2011, Proceedings of the National Academy of Sciences.

[11]  R. Schekman,et al.  A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum , 2010, Proceedings of the National Academy of Sciences.

[12]  M. Schrader,et al.  Pex11pβ-mediated growth and division of mammalian peroxisomes follows a maturation pathway , 2010, Journal of Cell Science.

[13]  H. Tabak,et al.  Peroxisomal Membrane Proteins Insert into the Endoplasmic Reticulum , 2010, Molecular biology of the cell.

[14]  J. Hancock,et al.  Hydrophobic and Basic Domains Target Proteins to Lipid Droplets , 2009, Traffic.

[15]  A. Motley,et al.  A dual function for Pex3p in peroxisome formation and inheritance , 2009, The Journal of cell biology.

[16]  G. Los,et al.  Peroxisome Dynamics in Cultured Mammalian Cells , 2009, Traffic.

[17]  J. Cancino,et al.  Pex3p‐dependent peroxisomal biogenesis initiates in the endoplasmic reticulum of human fibroblasts , 2009, Journal of cellular biochemistry.

[18]  R. Erdmann,et al.  The N-domain of Pex22p Can Functionally Replace the Pex3p N-domain in Targeting and Peroxisome Formation* , 2009, Journal of Biological Chemistry.

[19]  H. Riezman,et al.  Concentration of GPI‐Anchored Proteins upon ER Exit in Yeast , 2009, Traffic.

[20]  Arjen M. Krikken,et al.  Peroxisome Fission in Hansenula polymorpha Requires Mdv1 and Fis1, Two Proteins Also Involved in Mitochondrial Fission , 2008, Traffic.

[21]  I. J. van der Klei,et al.  Peroxisome proliferation in Hansenula polymorpha requires Dnm1p which mediates fission but not de novo formation. , 2008, Biochimica et biophysica acta.

[22]  M. Francolini,et al.  Transmembrane domain–dependent partitioning of membrane proteins within the endoplasmic reticulum , 2008, The Journal of cell biology.

[23]  A. Motley,et al.  Yeast peroxisomes multiply by growth and division , 2007, The Journal of cell biology.

[24]  R. Mullen,et al.  The ER-peroxisome connection in plants: development of the "ER semi-autonomous peroxisome maturation and replication" model for plant peroxisome biogenesis. , 2006, Biochimica et biophysica acta.

[25]  M. Fransen,et al.  The Import Competence of a Peroxisomal Membrane Protein Is Determined by Pex19p before the Docking Step* , 2006, Journal of Biological Chemistry.

[26]  Y. Fujiki,et al.  In Vitro Transport of Membrane Proteins to Peroxisomes by Shuttling Receptor Pex19p* , 2006, Journal of Biological Chemistry.

[27]  R. Rachubinski,et al.  Pex3p Initiates the Formation of a Preperoxisomal Compartment from a Subdomain of the Endoplasmic Reticulum in Saccharomyces cerevisiae* , 2005, Journal of Biological Chemistry.

[28]  A. Kragt,et al.  Endoplasmic Reticulum-directed Pex3p Routes to Peroxisomes and Restores Peroxisome Formation in a Saccharomyces cerevisiae pex3Δ Strain* , 2005, Journal of Biological Chemistry.

[29]  Catherine Rabouille,et al.  Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. , 2005, Current opinion in cell biology.

[30]  Peter Philippsen,et al.  Contribution of the Endoplasmic Reticulum to Peroxisome Formation , 2005, Cell.

[31]  H. Riezman,et al.  Differential ER exit in yeast and mammalian cells. , 2004, Current opinion in cell biology.

[32]  R. N. Trelease,et al.  Sorting pathway and molecular targeting signals for the Arabidopsis peroxin 3. , 2004, Biochemical and biophysical research communications.

[33]  S. Gould,et al.  PEX19 is a predominantly cytosolic chaperone and import receptor for class 1 peroxisomal membrane proteins , 2004, The Journal of cell biology.

[34]  A. Nakano,et al.  Rer1p, a retrieval receptor for ER membrane proteins, recognizes transmembrane domains in multiple modes. , 2003, Molecular biology of the cell.

[35]  A. Motley,et al.  Clathrin-mediated endocytosis in AP-2–depleted cells , 2003, The Journal of cell biology.

[36]  V. Goder,et al.  Topogenesis of membrane proteins: determinants and dynamics , 2001, FEBS letters.

[37]  H. Tabak,et al.  Peroxisomal membrane proteins are properly targeted to peroxisomes in the absence of COPI- and COPII-mediated vesicular transport. , 2001, Journal of cell science.

[38]  S. South,et al.  Inhibitors of Copi and Copii Do Not Block PEX3-Mediated Peroxisome Synthesis , 2000, The Journal of cell biology.

[39]  H. Tabak,et al.  Transport of fatty acids and metabolites across the peroxisomal membrane. , 2000, Biochimica et biophysica acta.

[40]  K. Faber,et al.  A Stretch of Positively Charged Amino Acids at the N Terminus ofHansenula polymorpha Pex3p Is Involved in Incorporation of the Protein into the Peroxisomal Membrane* , 2000, The Journal of Biological Chemistry.

[41]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[42]  K. Gorgas,et al.  Identification and characterization of the human peroxin PEX3. , 1999, European journal of cell biology.

[43]  K. Faber,et al.  Isolation and Characterization of Pas2p, a Peroxisomal Membrane Protein Essential for Peroxisome Biogenesis in the Methylotrophic Yeast Pichia pastoris* , 1996, The Journal of Biological Chemistry.

[44]  S. Emr,et al.  A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast , 1995, The Journal of cell biology.

[45]  H. Tabak,et al.  Differential protein import deficiencies in human peroxisome assembly disorders , 1994, The Journal of cell biology.

[46]  J. Höhfeld,et al.  PAS3, a Saccharomyces cerevisiae gene encoding a peroxisomal integral membrane protein essential for peroxisome biogenesis , 1991, The Journal of cell biology.

[47]  R. D. Gietz,et al.  New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. , 1988, Gene.

[48]  Richard J. S. Baerends,et al.  The role of Pex3p in early events of peroxisome biogenesis in Hansenula polymorpha , 2003 .

[49]  Y. Fujiki,et al.  Biogenesis of peroxisomes. , 1985, Annual review of cell biology.

[50]  Peter K. Kim,et al.  JCB: ARTICLE The , 2022 .