High-throughput proteomics using Fourier transform ion cyclotron resonance mass spectrometry

The advent of high-throughput proteomic technologies for global detection and quantitation of proteins creates new opportunities and challenges for those seeking to gain greater understanding of the cellular machinery. Here, recent advances in high-resolution capillary liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry are reviewed along with its potential application to high-throughput proteomics. These technological advances combined with quantitative stable isotope labeling methodologies provide powerful tools for expanding our understanding of biology at the system level.

[1]  Keqi Tang,et al.  Ultrasensitive and quantitative analyses from combined separations-mass spectrometry for the characterization of proteomes. , 2004, Accounts of chemical research.

[2]  Ronald J Moore,et al.  An automated high performance capillary liquid chromatography-Fourier transform ion cyclotron resonance mass spectrometer for high-throughput proteomics , 2004, Journal of the American Society for Mass Spectrometry.

[3]  Ronald J Moore,et al.  Multidimensional proteome analysis of human mammary epithelial cells. , 2004, Journal of proteome research.

[4]  T. Veenstra,et al.  Evaluation of the acid-cleavable isotope-coded affinity tag reagents: application to camptothecin-treated cortical neurons. , 2004, Journal of proteome research.

[5]  Richard D. Smith,et al.  Proteome analysis by mass spectrometry. , 2003, Annual review of biophysics and biomolecular structure.

[6]  Richard D. Smith,et al.  Phosphoprotein isotope-coded solid-phase tag approach for enrichment and quantitative analysis of phosphopeptides from complex mixtures. , 2003, Analytical chemistry.

[7]  Richard D. Smith,et al.  Proteome analyses using accurate mass and elution time peptide tags with capillary LC time-of-flight mass spectrometry , 2003, Journal of the American Society for Mass Spectrometry.

[8]  Xudong Yao,et al.  Trypsin catalyzed 16O-to-18O exchange for comparative proteomics: Tandem mass spectrometry comparison using MALDI-TOF, ESI-QTOF, and ESI-ion trap mass spectrometers , 2003, Journal of the American Society for Mass Spectrometry.

[9]  Ruedi Aebersold,et al.  Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry , 2003, Nature Biotechnology.

[10]  J. Yates,et al.  Similarity among tandem mass spectra from proteomic experiments: detection, significance, and utility. , 2003, Analytical chemistry.

[11]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[12]  Xudong Yao,et al.  Dissection of proteolytic 18O labeling: endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. , 2003, Journal of proteome research.

[13]  Andrew Emili,et al.  PRISM, a Generic Large Scale Proteomic Investigation Strategy for Mammals*S , 2003, Molecular & Cellular Proteomics.

[14]  Gordon A Anderson,et al.  Use of artificial neural networks for the accurate prediction of peptide liquid chromatography elution times in proteome analyses. , 2003, Analytical chemistry.

[15]  N. Anderson,et al.  The Human Plasma Proteome: History, Character, and Diagnostic Prospects , 2003, Molecular & Cellular Proteomics.

[16]  David L. Tabb,et al.  A proteomic view of the Plasmodium falciparum life cycle , 2002, Nature.

[17]  Nikola Tolić,et al.  High-throughput global peptide proteomic analysis by combining stable isotope amino acid labeling and data-dependent multiplexed-MS/MS. , 2002, Analytical chemistry.

[18]  Lance Wells,et al.  Mapping Sites of O-GlcNAc Modification Using Affinity Tags for Serine and Threonine Post-translational Modifications* , 2002, Molecular & Cellular Proteomics.

[19]  R. Hewick,et al.  Acid-labile isotope-coded extractants: a class of reagents for quantitative mass spectrometric analysis of complex protein mixtures. , 2002, Analytical chemistry.

[20]  Ronald J Moore,et al.  Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Dirk Wolters,et al.  Proteomic survey of metabolic pathways in rice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Gordon A Anderson,et al.  The use of accurate mass tags for high-throughput microbial proteomics. , 2002, Omics : a journal of integrative biology.

[23]  Richard D. Smith,et al.  Increased proteome coverage for quantitative peptide abundance measurements based upon high performance separations and DREAMS FTICR mass spectrometry , 2002, Journal of the American Society for Mass Spectrometry.

[24]  N. Kelleher,et al.  Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. , 2002, Analytical chemistry.

[25]  R. Aebersold,et al.  Quantitative proteome analysis by solid-phase isotope tagging and mass spectrometry , 2002, Nature Biotechnology.

[26]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[27]  Gordon A Anderson,et al.  Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Richard D. Smith,et al.  Low-energy collision-induced dissociation fragmentation analysis of cysteinyl-modified peptides. , 2002, Analytical chemistry.

[29]  F. Regnier,et al.  Global internal standard technology for comparative proteomics. , 2002, Journal of chromatography. A.

[30]  F. Regnier,et al.  Minimizing resolution of isotopically coded peptides in comparative proteomics. , 2002, Journal of proteome research.

[31]  F. McLafferty,et al.  Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. , 2002, Journal of the American Chemical Society.

[32]  Timothy D. Veenstra,et al.  AN ACCURATE MASS TAG STRATEGY FOR QUANTITATIVE AND HIGH THROUGHPUT PROTEOME MEASUREMENTS , 2002 .

[33]  D. Figeys,et al.  18O labeling: a tool for proteomics. , 2001, Rapid communications in mass spectrometry : RCM.

[34]  J. Yates,et al.  An automated multidimensional protein identification technology for shotgun proteomics. , 2001, Analytical chemistry.

[35]  M E Belov,et al.  High-throughput proteomics using high-efficiency multiple-capillary liquid chromatography with on-line high-performance ESI FTICR mass spectrometry. , 2001, Analytical chemistry.

[36]  X. Yao,et al.  Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. , 2001, Analytical chemistry.

[37]  R. Aebersold,et al.  A systematic approach to the analysis of protein phosphorylation , 2001, Nature Biotechnology.

[38]  M. Stoeckli,et al.  Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues , 2001, Nature Medicine.

[39]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[40]  R. Aebersold,et al.  Mass spectrometry in proteomics. , 2001, Chemical reviews.

[41]  A. Marshall Milestones in fourier transform ion cyclotron resonance mass spectrometry technique development , 2000 .

[42]  S. Gygi,et al.  Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. Bradbury,et al.  Site-specific mass tagging with stable isotopes in proteins for accurate and efficient protein identification. , 2000, Analytical chemistry.

[44]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[45]  Nikola Tolić,et al.  High throughput proteome-wide precision measurements of protein expression using mass spectrometry , 1999 .

[46]  G. Anderson,et al.  High-mass-measurement accuracy and 100% sequence coverage of enzymatically digested bovine serum albumin from an ESI-FTICR mass spectrum. , 1999, Analytical chemistry.

[47]  F. Cross,et al.  Accurate quantitation of protein expression and site-specific phosphorylation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  F. McLafferty,et al.  Top down versus bottom up protein characterization by tandem high- resolution mass spectrometry , 1999 .

[49]  F. McLafferty,et al.  Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process , 1998 .

[50]  A. Podtelejnikov,et al.  Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Nikola Tolić,et al.  Ultrasensitive proteomics using high-efficiency on-line micro-SPE-nanoLC-nanoESI MS and MS/MS. , 2004, Analytical chemistry.

[52]  Hiroyuki Kaji,et al.  Large-scale identification of Caenorhabditis elegans proteins by multidimensional liquid chromatography-tandem mass spectrometry. , 2003, Journal of proteome research.

[53]  Joshua E. Elias,et al.  Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. , 2003, Journal of proteome research.

[54]  J Godovac-Zimmermann,et al.  Perspectives for mass spectrometry and functional proteomics. , 2001, Mass spectrometry reviews.

[55]  Richard D. Smith,et al.  Proteome analysis using selective incorporation of isotopically labeled amino acids , 2000, Journal of the American Society for Mass Spectrometry.

[56]  G. Anderson,et al.  Initial implementation of an electrodynamic ion funnel with fourier transform ion cyclotron resonance mass spectrometry , 2000, Journal of the American Society for Mass Spectrometry.

[57]  A. Marshall,et al.  Fourier transform ion cyclotron resonance mass spectrometry: a primer. , 1998, Mass spectrometry reviews.