The power spectrum of SUSY-CDM on subgalactic scales

ABSTRACT The formation of large scale structure is independent of the nature of the cold darkmatter (CDM), however the fate of very small scale inhomogeneities depends on themicro-physics of the CDM particles. We investigate the matter power spectrum forscales that enter the Hubble radius well before matter-radiation equality, and followits evolution until the time when the first inhomogeneities become non-linear. Ourfocus lies on weakly interacting massive particles (WIMPs), and as a concrete exam-ple we analyze the case when the lightest supersymmetric particle is a bino. We showthat collisional damping and free-streaming of WIMPs lead to a matter power spec-trum with a sharp cut-off at about 10 −6 M ⊙ and a maximum close to that cut-off. Wealso calculate the transfer function for the growth of the inhomogeneities in the lin-ear regime. These three effects (collisional damping, free-streaming and gravitationalgrowth) are combined to provide a WMAP normalized primordial CDM power spec-trum, which could serve as an input for high resolution CDM simulations. The smallestinhomogeneities typically enter the non-linear regime at a redshift of about 60.Key words: cosmology: theory – dark matter – early Universe

[1]  Particle Physics and Cosmology , 2002, hep-ph/0211316.

[2]  S. Weinberg Cosmological Fluctuations of Small Wavelength , 2002, astro-ph/0207375.

[3]  E. Kolb,et al.  Femtolensing and Picolensing by Axion Miniclusters , 1995, astro-ph/9510043.

[4]  Effect of realistic astrophysical inputs on the phase and shape of the WIMP annual modulation signal , 2003 .

[5]  Effect of physical assumptions on the calculation of microwave background anisotropies. , 1995, Physical review. D, Particles and fields.

[6]  V.Berezinsky,et al.  Small - scale clumps in the galactic halo and dark matter annihilation , 2003 .

[7]  J. Bardeen,et al.  Gauge Invariant Cosmological Perturbations , 1980 .

[8]  Cosmological baryon sound waves coupled with the primeval radiation , 1997, astro-ph/9709209.

[9]  A. Gould Femtolensing of gamma-ray bursters , 1992 .

[10]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[11]  P. Schneider,et al.  Evidence for substructure in lens galaxies , 1997, astro-ph/9707187.

[12]  Detecting cold dark-matter candidates. , 1986 .

[13]  Dark matter in draco and the local group: implications for direct detection experiments , 2001, astro-ph/0106271.

[14]  Hayes,et al.  Review of particle properties. , 1978, Physical review. D, Particles and fields.

[15]  Supersymmetric dark matter in light of WMAP , 2003, hep-ph/0303043.

[16]  J. Silk,et al.  Clumpy cold dark matter , 1993 .

[17]  E. Gaztañaga,et al.  Structure Formation in the Universe , 2003 .

[18]  Gerard Jungman,et al.  Supersymmetric Dark Matter , 2000 .

[19]  Felix Stoehr,et al.  Dark matter annihilation in the halo of the Milky Way , 2003, astro-ph/0307026.

[20]  Review of Big Bang Nucleosynthesis and Primordial Abundances , 2000, astro-ph/0001318.

[21]  E. Squires,et al.  Particle Physics and Cosmology , 1989 .

[22]  A. Green Effect of realistic astrophysical inputs on the phase and shape of the weakly interacting massive particles annual modulation signal , 2003 .

[23]  Thanu Padmanabhan,et al.  Theoretical Astrophysics: Volume 3, Galaxies and Cosmology , 2000 .

[24]  P. Ullio,et al.  Cosmological dark matter annihilations into γ rays: A closer look , 2002, astro-ph/0207125.

[25]  Helmuth Spieler,et al.  Review of Particle Physics, 2008-2009 , 2000 .

[26]  Kazuhiro Yamamoto,et al.  Evolution of Small-Scale Cosmological Baryon Perturbations and Matter Transfer Functions , 1997, astro-ph/9709247.

[27]  Lars Bergström,et al.  Non-baryonic dark matter: observational evidence and detection methods , 2000 .

[28]  The clumpiness of cold dark matter: implications for the annihilation signal , 2002, astro-ph/0207299.

[29]  Damping scales of neutralino cold dark matter , 2001, astro-ph/0104173.

[30]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[31]  M. Halpern,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology , 2003 .

[32]  A. Green Effect of halo modeling on weakly interacting massive particle exclusion limits , 2002 .

[33]  Surface brightness of dark matter: Unique signatures of neutralino annihilation in the galactic halo , 2000, astro-ph/0010056.

[34]  Small scale cosmological perturbations: An Analytic approach , 1995, astro-ph/9510117.

[35]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[36]  S. Dimopoulos LHC, SSC and the universe , 1990 .

[37]  Neutralino gamma-ray signals from accreting halo dark matter , 2000, astro-ph/0012346.

[38]  L. Roszkowski Light neutralino as dark matter , 1991 .

[39]  P. Ullio,et al.  Clumpy Neutralino Dark Matter , 1998, astro-ph/9806072.

[40]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.