A Hierarchy of Lower Bounds for Sublinear Additive Spanners

Spanners, emulators, and approximate distance oracles can be viewed as lossy compression schemes that represent an unweighted graph metric in small space, say $\tilde{O}(n^{1+\delta})$ bits. There ...

[1]  Sandeep Sen,et al.  A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs , 2007, Random Struct. Algorithms.

[2]  Béla Bollobás,et al.  Extremal problems in graph theory , 1977, J. Graph Theory.

[3]  J. Matousek,et al.  On the distortion required for embedding finite metric spaces into normed spaces , 1996 .

[4]  Mikkel Thorup,et al.  Shortcutting Planar Digraphs , 1995, Combinatorics, Probability and Computing.

[5]  Merav Parter,et al.  Bypassing Erdős' Girth Conjecture: Hybrid Stretch and Sourcewise Spanners , 2014, ICALP.

[6]  Mihalis Yannakakis,et al.  High-probability parallel transitive closure algorithms , 1990, SPAA '90.

[7]  Felix Lazebnik,et al.  A characterization of the components of the graphs D(k, q) , 1996, Discret. Math..

[8]  Bernard Chazelle Computing on a Free Tree via Complexity-Preserving Mappings , 1984, FOCS.

[9]  Rachit Agarwal,et al.  The Space-Stretch-Time Tradeoff in Distance Oracles , 2014, ESA.

[10]  A. Rényii,et al.  ON A PROBLEM OF GRAPH THEORY , 1966 .

[11]  David Peleg,et al.  (1 + εΒ)-spanner constructions for general graphs , 2001, STOC '01.

[12]  Christopher M. Hartman Extremal problems in graph theory , 1997 .

[13]  Ely Porat,et al.  On the hardness of distance oracle for sparse graph , 2010, ArXiv.

[14]  Michael Elkin,et al.  Hopsets with Constant Hopbound, and Applications to Approximate Shortest Paths , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[15]  Ely Porat,et al.  Preprocess, Set, Query! , 2013, Algorithmica.

[16]  Piotr Indyk,et al.  Fast estimation of diameter and shortest paths (without matrix multiplication) , 1996, SODA '96.

[17]  Edith Cohen,et al.  Polylog-time and near-linear work approximation scheme for undirected shortest paths , 1994, STOC '94.

[18]  F. Lazebnik,et al.  A new series of dense graphs of high girth , 1995, math/9501231.

[19]  Mikkel Thorup,et al.  Spanners and emulators with sublinear distance errors , 2006, SODA '06.

[20]  Polylog-time and near-linear work approximation scheme for undirected shortest paths , 2000, JACM.

[21]  Ittai Abraham,et al.  On Approximate Distance Labels and Routing Schemes with Affine Stretch , 2011, DISC.

[22]  Peter Volkmann,et al.  Über ein Problem von Fenyő , 1984 .

[23]  Seth Pettie,et al.  Low distortion spanners , 2007, TALG.

[24]  A. Shapira,et al.  Extremal Graph Theory , 2013 .

[25]  William Hesse,et al.  Directed graphs requiring large numbers of shortcuts , 2003, SODA '03.

[26]  Jacques Tits,et al.  Sur la trialité et certains groupes qui s’en déduisent , 1959 .

[27]  Amir Abboud,et al.  The 4/3 additive spanner exponent is tight , 2015, J. ACM.

[28]  M. Simonovits,et al.  Cycles of even length in graphs , 1974 .

[29]  Brighten Godfrey,et al.  Distance Oracles for Stretch Less Than 2 , 2013, SODA.

[30]  Fabrizio Grandoni,et al.  On Pairwise Spanners , 2013, STACS.

[31]  Kurt Mehlhorn,et al.  Additive spanners and (α, β)-spanners , 2010, TALG.

[32]  Noga Alon,et al.  Testing subgraphs in large graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[33]  Mikkel Thorup,et al.  Parallel Shortcutting of Rooted Trees , 1997, J. Algorithms.

[34]  Rephael Wenger,et al.  Extremal graphs with no C4's, C6's, or C10's , 1991, J. Comb. Theory, Ser. B.

[35]  Wei Yu,et al.  Distance Oracles for Sparse Graphs , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[36]  Virginia Vassilevska Williams,et al.  Very Sparse Additive Spanners and Emulators , 2015, ITCS.

[37]  Vasiliy A. Ustimenko,et al.  AN APPLICATION OF GROUP THEORY TO EXTREMAL GRAPH THEORY , 2013 .

[38]  Felix Lazebnik,et al.  New Examples of Graphs without Small Cycles and of Large Size , 1993, Eur. J. Comb..

[39]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[40]  Telikepalli Kavitha,et al.  Small Stretch Pairwise Spanners and Approximate D-Preservers , 2015, SIAM J. Discret. Math..

[41]  Uri Zwick,et al.  All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..

[42]  Mathias Bæk Tejs Knudsen,et al.  Additive Spanners: A Simple Construction , 2014, SWAT.

[43]  Mihai Patrascu,et al.  Distance Oracles beyond the Thorup-Zwick Bound , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[44]  Thomas H. Spencer,et al.  Time-Work Tradeoffs of the Single-Source Shortest Paths Problem , 1999, J. Algorithms.

[45]  C. T. Benson Minimal Regular Graphs of Girths Eight and Twelve , 1966, Canadian Journal of Mathematics.

[46]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[47]  David P. Woodruff Additive Spanners in Nearly Quadratic Time , 2010, ICALP.

[48]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[49]  Mikkel Thorup,et al.  On Shortcutting Digraphs , 1992, WG.

[50]  Philip N. Klein,et al.  A Randomized Parallel Algorithm for Single-Source Shortest Paths , 1997, J. Algorithms.

[51]  R. Salem,et al.  On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Seth Pettie,et al.  A Linear-Size Logarithmic Stretch Path-Reporting Distance Oracle for General Graphs , 2015, SODA.

[53]  Telikepalli Kavitha,et al.  New Pairwise Spanners , 2017, Theory of Computing Systems.

[54]  I. Reiman Über ein Problem von K. Zarankiewicz , 1958 .

[55]  Mikkel Thorup,et al.  A New Infinity of Distance Oracles for Sparse Graphs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[56]  Virginia Vassilevska Williams,et al.  Better Distance Preservers and Additive Spanners , 2015, SODA.

[57]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[58]  Mikkel Thorup,et al.  Deterministic Constructions of Approximate Distance Oracles and Spanners , 2005, ICALP.

[59]  Amir Abboud,et al.  Error Amplification for Pairwise Spanner Lower Bounds , 2016, SODA.

[60]  Edith Cohen Using Selective Path-Doubling for Parallel Shortest-Path Computations , 1997, J. Algorithms.

[61]  Shiri Chechik,et al.  New Additive Spanners , 2013, SODA.

[62]  Shiri Chechik,et al.  Approximate Distance Oracles with Improved Bounds , 2015, STOC.