Particle transport mode during flash sintering of sodium bismuth titanate ceramic

[1]  Y. Pu,et al.  Flash sintering of barium titanate , 2019, Ceramics International.

[2]  Y. Pu,et al.  Influence of BaZrO3 additive on the energy-storage properties of 0.775Na0.5Bi0.5TiO3-0.225BaSnO3 relaxor ferroelectrics , 2019, Journal of Alloys and Compounds.

[3]  Zhenjun Wang,et al.  Flash sintering of sodium niobate ceramics , 2019, Materials Letters.

[4]  R. Chaim On the kinetics of liquid-assisted densification during flash sintering of ceramic nanoparticles , 2019, Scripta Materialia.

[5]  Zhenjun Wang,et al.  Flash sintering of lead zirconate titanate (PZT) ceramics: Influence of electrical field and current limit on densification and grain growth , 2018, Journal of the European Ceramic Society.

[6]  Y. Tsur,et al.  Recent Advances in Mechanism Research and Methods for Electric‐Field‐Assisted Sintering of Ceramics , 2018, Advanced materials.

[7]  Yongfei Cui,et al.  High Energy Storage Density and Optical Transparency of Microwave Sintered Homogeneous (Na0.5Bi0.5)(1–x)BaxTi(1–y)SnyO3 Ceramics , 2018 .

[8]  V. Sglavo,et al.  Viscous flow flash sintering of porous silica glass , 2017 .

[9]  Y. Pu,et al.  Influence of BaSnO3 additive on the energy storage properties of Na0.5Bi0.5TiO3-based relaxor ferroelectrics , 2017 .

[10]  R. Raj,et al.  Flash sintering of highly insulating nanostructured phase‐pure BiFeO3 , 2017 .

[11]  M. Biesuz Flash Sintering of Alumina-based Ceramics , 2017 .

[12]  V. Sglavo,et al.  Liquid phase flash sintering in magnesia silicate glass-containing alumina , 2017 .

[13]  S. Grasso,et al.  Review of flash sintering: Materials, mechanisms and modelling , 2017 .

[14]  N. S. Negi,et al.  Tailoring structural and electrical properties of A-site non-stoichiometric Na0.5Bi0.5TiO3 ceramic at different sintering temperature , 2017 .

[15]  V. Sglavo,et al.  Flash sintering of alumina: Effect of different operating conditions on densification , 2016 .

[16]  R. Dhanasekaran,et al.  Synthesis, structural, morphological and electrical properties of NBT–BT ceramics for piezoelectric applications , 2016 .

[17]  R. Chaim Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering , 2016, Materials.

[18]  C. Randall,et al.  Flash sintering of potassium-niobate , 2015 .

[19]  K. Sasaki,et al.  Enhancement of sintering rates in BaTiO 3 by controlling of DC electric current , 2015 .

[20]  R. S. Bonilla,et al.  Electrical characteristics of flash sintering: thermal runaway of Joule heating , 2015 .

[21]  V. Sglavo,et al.  Flash sintering as a nucleation phenomenon and a model thereof , 2014 .

[22]  V. Sglavo,et al.  Field assisted sintering of ceramic constituted by alumina and yttria stabilized zirconia , 2014 .

[23]  Y. Sakka,et al.  Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering , 2014 .

[24]  Jacob L. Jones,et al.  Structure and ferroelectricity of nonstoichiometric (Na0.5Bi0.5)TiO3 , 2014 .

[25]  Zhenhua Wang,et al.  An improved direct current sintering technique for proton conductor – BaZr0.1Ce0.7Y0.1Yb0.1O3: The effect of direct current on sintering process , 2014 .

[26]  R. Raj,et al.  Influence of the Field and the Current Limit on Flash Sintering at Isothermal Furnace Temperatures , 2013 .

[27]  J. Narayan Grain growth model for electric field-assisted processing and flash sintering of materials , 2013 .

[28]  V. Sglavo,et al.  Electric Field Assisted Sintering of Cubic Zirconia at 390°C , 2013 .

[29]  M. Cologna,et al.  Flash Sintering of Anode–Electrolyte Multilayers for SOFC Applications , 2013 .

[30]  E. Muccillo,et al.  Densification and enhancement of the grain boundary conductivity of gadolinium-doped barium cerate by ultra fast flash grain welding , 2012 .

[31]  R. Raj Joule heating during flash-sintering , 2012 .

[32]  M. Cologna,et al.  Defect Structure of Flash‐Sintered Strontium Titanate , 2012 .

[33]  Zhenhua Wang,et al.  A novel sintering method to obtain fully dense gadolinia doped ceria by applying a direct current , 2012 .

[34]  M. Steil,et al.  Welding of yttrium-doped zirconia granules by electric current activated sintering (ECAS): Protrusion formation as a possible intermediate step in the consolidation mechanism , 2012 .

[35]  M. Cologna,et al.  Influence of Externally Imposed and Internally Generated Electrical Fields on Grain Growth, Diffusional Creep, Sintering and Related Phenomena in Ceramics , 2011 .

[36]  M. Cologna,et al.  Flash‐Sintering of Cubic Yttria‐Stabilized Zirconia at 750°C for Possible Use in SOFC Manufacturing , 2011 .

[37]  M. Cologna,et al.  Flash Sintering of Nanograin Zirconia in <5 s at 850°C , 2010 .

[38]  O. Guillon,et al.  Effect of Electrical Field/Current on Sintering of Fully Stabilized Zirconia , 2012 .

[39]  R. Raj,et al.  Flash-Sinterforging of Nanograin Zirconia: Field Assisted Sintering and Superplasticity , 2012 .