High energy storage density at low electric field of ABO3 antiferroelectric films with ionic pair doping

[1]  C. Kittel Theory of Antiferroelectric Crystals , 1951 .

[2]  Leslie E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients , 1989 .

[3]  A. Tagantsev,et al.  Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films , 1998 .

[4]  Zhi-guo Liu,et al.  Phase transition related stress in ferroelectric thin films , 2000 .

[5]  Xin Zhou,et al.  A Dielectric Polymer with High Electric Energy Density and Fast Discharge Speed , 2006, Science.

[6]  Xihong Hao,et al.  Preparation of highly (111)-oriented (Pb,La)(Zr,Sn,Ti)O3 (PLZST) antiferroelectric thin films by modified sol-gel process using a novel tin source, dibutyloxide of tin , 2007 .

[7]  Jayanta Parui,et al.  Enhancement of charge and energy storage in sol-gel derived pure and La-modified PbZrO3 thin films , 2008 .

[8]  Russell J. Hemley,et al.  Origin of morphotropic phase boundaries in ferroelectrics , 2008, Nature.

[9]  Xihong Hao,et al.  Improved Energy Storage Performance and Fatigue Endurance of Sr‐Doped PbZrO3 Antiferroelectric Thin Films , 2009 .

[10]  X. Tan,et al.  Electric-field-induced antiferroelectric to ferroelectric phase transition in mechanically confined Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3 , 2010 .

[11]  Meysam Sharifzadeh Mirshekarloo,et al.  Large strain and high energy storage density in orthorhombic perovskite (Pb0.97La0.02)(Zr1−x−ySnxTiy)O3 antiferroelectric thin films , 2010 .

[12]  S. C. Ammal,et al.  Density functional theory study on the electronic structure of n- and p-type doped SrTiO 3 at anodic solid oxide fuel cell conditions , 2011 .

[13]  Zhaohua Jiang,et al.  Effect of Eu Doping on the Electrical Properties and Energy Storage Performance of PbZrO3 Antiferroelectric Thin Films , 2011 .

[14]  V. Shvartsman,et al.  Lead-Free Relaxor Ferroelectrics , 2012 .

[15]  Xihong Hao,et al.  Fabrication and energy-storage performance of (Pb,La)(Zr,Ti)O3 antiferroelectric thick films derived from polyvinylpyrrolidone-modified chemical solution , 2012 .

[16]  Genshui Wang,et al.  Dynamic Hysteresis and Scaling Behavior of Energy Density in Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]O3 Antiferroelectric Bulk Ceramics , 2012 .

[17]  B. Ma,et al.  Lead lanthanum zirconate titanate ceramic thin films for energy storage. , 2013, ACS applied materials & interfaces.

[18]  J. Ge,et al.  Effect of residual stress on energy storage property in PbZrO3 antiferroelectric thin films with different orientations , 2013 .

[19]  Haixiong Tang,et al.  Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. , 2013, Nano letters.

[20]  Suk‐Joong L. Kang,et al.  Coherency strain enhanced dielectric-temperature property of rare-earth doped BaTiO3 , 2013 .

[21]  Haixiong Tang,et al.  Synthesis of High Aspect Ratio BaTiO3 Nanowires for High Energy Density Nanocomposite Capacitors , 2013 .

[22]  K. Rabe,et al.  Antiferroelectricity and ferroelectricity in epitaxially strained PbZrO 3 from first principles , 2013, 1307.7645.

[23]  Xihong Hao,et al.  A review on the dielectric materials for high energy-storage application , 2013 .

[24]  Z. Cao,et al.  Enhancement of charge and energy storage in PbZrO3 thin films by local field engineering , 2014 .

[25]  Yang Shen,et al.  Topological‐Structure Modulated Polymer Nanocomposites Exhibiting Highly Enhanced Dielectric Strength and Energy Density , 2014 .

[26]  W. Fei,et al.  Large piezoelectric properties induced by doping ionic pairs in BaTiO3 ceramics , 2014 .

[27]  B. Peng,et al.  Improvement of the recoverable energy storage density and efficiency by utilizing the linear dielectric response in ferroelectric capacitors , 2014 .

[28]  Changhai Zhang,et al.  Enhanced dielectric performance of amorphous calcium copper titanate/polyimide hybrid film , 2014 .

[29]  X. Tan,et al.  Effect of Ba Content on the Stress Sensitivity of the Antiferroelectric to Ferroelectric Phase Transition in (Pb,La,Ba,)(Zr,Sn,Ti)O3 Ceramics , 2014 .

[30]  Dianguo Xu,et al.  LaNiO3 seed layer induced enhancement of piezoelectric properties in (1 0 0)-oriented (1 − x)BZT–xBCT thin films , 2015 .

[31]  Yu Bai,et al.  Significantly Enhanced Breakdown Strength and Energy Density in Sandwich‐Structured Barium Titanate/Poly(vinylidene fluoride) Nanocomposites , 2015, Advanced materials.

[32]  S. Won,et al.  Antiferroelectric Thin-Film Capacitors with High Energy-Storage Densities, Low Energy Losses, and Fast Discharge Times. , 2015, ACS applied materials & interfaces.

[33]  Genshui Wang,et al.  Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 antiferroelectric ceramics for pulse power capacitors , 2015 .

[34]  M. Cao,et al.  Effects of thickness on energy storage of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric films deposited on LaNiO3 electrodes , 2016 .

[35]  Xin Zhang,et al.  High energy density of polymer nanocomposites at a low electric field induced by modulation of their topological-structure , 2016 .

[36]  Qiliang Li,et al.  Energy storage and polarization switching kinetics of (001)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films , 2016 .

[37]  Changhai Zhang,et al.  Nano iron oxide-deposited calcium copper titanate/polyimide hybrid films induced by an external magnetic field: toward a high dielectric constant and suppressed loss , 2016 .

[38]  M. Guennou,et al.  Theory of antiferroelectric phase transitions , 2016, 1601.05687.

[39]  Yujun Feng,et al.  Influence of perpendicular compressive stress on the phase transition behavior in (Pb,La,Ba,)(Zr,Sn,Ti)O3 antiferroelectric ceramics , 2016 .

[40]  Thomas Mikolajick,et al.  Nonvolatile Random Access Memory and Energy Storage Based on Antiferroelectric Like Hysteresis in ZrO2 , 2016 .

[41]  Yu Zhao,et al.  Defect Engineering of Lead-Free Piezoelectrics with High Piezoelectric Properties and Temperature-Stability. , 2016, ACS applied materials & interfaces.

[42]  Zhuo Xu,et al.  Evaluation of discharge energy density of antiferroelectric ceramics for pulse capacitors , 2016 .

[43]  Jingfeng Li,et al.  Lead‐Free Antiferroelectric Silver Niobate Tantalate with High Energy Storage Performance , 2017, Advanced materials.

[44]  Enhanced piezoelectricity in A B O 3 ferroelectrics via intrinsic stress-driven flattening of the free-energy profile , 2017 .

[45]  Bing Xie,et al.  Enhanced energy density of polymer nanocomposites at a low electric field through aligned BaTiO3 nanowires , 2017 .

[46]  T. Lookman,et al.  Enhanced Energy Storage with Polar Vortices in Ferroelectric Nanocomposites , 2017 .

[47]  J. Ouyang,et al.  Increasing energy storage capabilities of space-charge dominated ferroelectric thin films using interlayer coupling ☆ , 2017 .

[48]  Tiandong Zhang,et al.  High‐energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films , 2017 .

[49]  Tiandong Zhang,et al.  Room temperature ferroelectricity in donor-acceptor co-doped TiO2 ceramics using doping-engineering , 2018 .

[50]  Hong Wang,et al.  High-Temperature Dielectric Materials for Electrical Energy Storage , 2018, Annual Review of Materials Research.

[51]  Relaxor Ferroelectrics,et al.  Relaxor Ferroelectrics , 2018 .

[52]  K. Zhou,et al.  High Discharge Energy Density at Low Electric Field Using an Aligned Titanium Dioxide/Lead Zirconate Titanate Nanowire Array , 2017, Advanced science.