Riemann-Hilbert problems for last passage percolation

Last three years have seen new developments in the theory of last passage percolation, which has variety applications to random permutations, random growth and random vicious walks. It turns out that a few class of models have determinant formulas for the probability distribution, which can be analyzed asymptotically. One of the tools for the asymptotic analysis has been the Riemann-Hilbert method. In this paper, we survey the use of Riemann-Hilbert method in the last passage percolation problems.

[1]  H. Spohn,et al.  Current Fluctuations for the Totally Asymmetric Simple Exclusion Process , 2001, cond-mat/0101200.

[2]  A. Boettcher On the Determinant Formulas by Borodin, Okounkov, Baik, Deift and Rains , 2001, math/0101008.

[3]  A. Böttcher One more proof of the Borodin-Okounkov formula for Toeplitz determinants , 2000, math/0012200.

[4]  J. Baik,et al.  A Fredholm Determinant Identity and the Convergence of Moments for Random Young Tableaux , 2000, math/0012117.

[5]  E. Rains Correlation functions for symmetrized increasing subsequences , 2000, math/0006097.

[6]  C. Tracy,et al.  Limit Theorems for Height Fluctuations in a Class of Discrete Space and Time Growth Models , 2000, math/0005133.

[7]  E. Rains A mean identity for longest increasing subsequence problems , 2000, math/0004082.

[8]  J. Baik,et al.  Limiting Distributions for a Polynuclear Growth Model with External Sources , 2000, math/0003130.

[9]  J. Baik Random vicious walks and random matrices , 2000, math/0001022.

[10]  Mark Adler,et al.  Integrals over classical groups, random permutations, toda and Toeplitz lattices , 1999, math/9912143.

[11]  Spohn,et al.  Universal distributions for growth processes in 1+1 dimensions and random matrices , 1999, Physical review letters.

[12]  Stephanos Venakides,et al.  Strong asymptotics of orthogonal polynomials with respect to exponential weights , 1999 .

[13]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[14]  K. Johansson Transversal fluctuations for increasing subsequences on the plane , 1999, math/9910146.

[15]  H. Spohn,et al.  Statistical Self-Similarity of One-Dimensional Growth Processes , 1999, cond-mat/9910273.

[16]  J. Baik,et al.  Symmetrized Random Permutations , 1999, math/9910019.

[17]  H. Widom,et al.  On a Toeplitz determinant identity of Borodin and Okounkov , 1999, math/9909010.

[18]  Alexei Borodin,et al.  A Fredholm determinant formula for Toeplitz determinants , 1999, math/9907165.

[19]  P. Diaconis,et al.  Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem , 1999 .

[20]  A. Okounkov Infinite wedge and random partitions , 1999, math/9907127.

[21]  K. Johansson Discrete orthogonal polynomial ensembles and the Plancherel measure. , 1999, math/9906120.

[22]  J. Baik,et al.  The asymptotics of monotone subsequences of involutions , 1999, math/9905084.

[23]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[24]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[25]  C. Wang Orthonormal polynomials on the unit circle and spatially discrete PainlevéII equation , 1999, solv-int/9902011.

[26]  J. Baik,et al.  On the distribution of the length of the second row of a Young diagram under Plancherel measure , 1999, math/9901118.

[27]  J. Baik,et al.  On the distribution of the length of the longest increasing subsequence of random permutations , 1998, math/9810105.

[28]  Timo Seppäläinen,et al.  Large deviations for increasing sequences on the plane , 1998 .

[29]  Anthony J. Guttmann,et al.  Vicious walkers and Young tableaux I: without walls , 1998 .

[30]  Eric M. Rains,et al.  Increasing Subsequences and the Classical Groups , 1998, Electron. J. Comb..

[31]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[32]  Athanassios S. Fokas,et al.  Discrete Painlevé equations and their appearance in quantum gravity , 1991 .

[33]  Vladimir E. Korepin,et al.  Differential Equations for Quantum Correlation Functions , 1990 .

[34]  I. Gessel Symmetric functions and P-recursiveness , 1990, J. Comb. Theory A.

[35]  P. Túrán On orthogonal polynomials , 1975 .

[36]  P. Moerbeke,et al.  Random Matrices and Random Permutations , 2000 .

[37]  Mathematical Physics © Springer-Verlag 1999 Random Unitary Matrices, Permutations and Painlevé , 1998 .

[38]  K. Johansson THE LONGEST INCREASING SUBSEQUENCE IN A RANDOM PERMUTATION AND A UNITARY RANDOM MATRIX MODEL , 1998 .

[39]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[40]  P. Deift,et al.  Asymptotics for the painlevé II equation , 1995 .

[41]  Mathematical Physics © Springer-Verlag 1994 Level-Spacing Distributions and the Airy Kernel , 1992 .

[42]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.