Hybrid regularization image deblurring in the presence of impulsive noise

Image deblurring is one of the fundamental problems in the image processing and computer vision fields. In this paper, we propose a new approach for restoring images corrupted by blur and impulse noise. The existing methods used to address this problem are based on minimizing the objective functional, which is the sum of the L"1-data fidelity term, and the total variation (TV) regularization term. However, TV introduces staircase effects. Thus, we propose a new objective functional that combines the tight framelet and TV to restore images corrupted by blur and impulsive noise while mitigating staircase effects. The minimization of the new objective functional presents a computational challenge. We propose a fast minimization algorithm by employing the augmented Lagrangian technique. The experiments on a set of image deblurring benchmark problems show that the proposed method outperforms previous state-of-the-art methods for image restoration.

[1]  Mila Nikolova,et al.  Efficient Minimization Methods of Mixed l2-l1 and l1-l1 Norms for Image Restoration , 2005, SIAM J. Sci. Comput..

[2]  Raymond H. Chan,et al.  Wavelet Algorithms for High-Resolution Image Reconstruction , 2002, SIAM J. Sci. Comput..

[3]  R. Chan,et al.  Tight frame: an efficient way for high-resolution image reconstruction , 2004 .

[4]  Nahum Kiryati,et al.  Image Deblurring in the Presence of Impulsive Noise , 2006, International Journal of Computer Vision.

[5]  Raymond H. Chan,et al.  Convergence analysis of tight framelet approach for missing data recovery , 2009, Adv. Comput. Math..

[6]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[7]  Jian-Feng Cai,et al.  Split Bregman Methods and Frame Based Image Restoration , 2009, Multiscale Model. Simul..

[8]  Junfeng Yang,et al.  ALTERNATING DIRECTION ALGORITHMS FOR TOTAL VARIATION DECONVOLUTION IN IMAGE RECONSTRUCTION , 2009 .

[9]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[10]  Michael K. Ng,et al.  Iterative Algorithms Based on Decoupling of Deblurring and Denoising for Image Restoration , 2008, SIAM J. Sci. Comput..

[11]  Qiegen Liu,et al.  An augmented Lagrangian approach to general dictionary learning for image denoising , 2012, J. Vis. Commun. Image Represent..

[12]  Lixin Shen,et al.  Framelet Algorithms for De-Blurring Images Corrupted by Impulse Plus Gaussian Noise , 2011, IEEE Transactions on Image Processing.

[13]  Raymond H. Chan,et al.  Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization , 2005, IEEE Transactions on Image Processing.

[14]  Raymond H. Chan,et al.  Constrained Total Variation Deblurring Models and Fast Algorithms Based on Alternating Direction Method of Multipliers , 2013, SIAM J. Imaging Sci..

[15]  Junfeng Yang,et al.  An Efficient TVL1 Algorithm for Deblurring Multichannel Images Corrupted by Impulsive Noise , 2009, SIAM J. Sci. Comput..

[16]  José M. Bioucas-Dias,et al.  An iterative algorithm for linear inverse problems with compound regularizers , 2008, 2008 15th IEEE International Conference on Image Processing.

[17]  Ming Yan,et al.  Restoration of Images Corrupted by Impulse Noise and Mixed Gaussian Impulse Noise using Blind Inpainting , 2013, SIAM J. Imaging Sci..

[18]  Bin Dong,et al.  An Efficient Algorithm for ℓ0 Minimization in Wavelet Frame Based Image Restoration , 2013, J. Sci. Comput..

[19]  Ernie Esser,et al.  Applications of Lagrangian-Based Alternating Direction Methods and Connections to Split Bregman , 2009 .

[20]  Michael K. Ng,et al.  Coupled Variational Image Decomposition and Restoration Model for Blurred Cartoon-Plus-Texture Images With Missing Pixels , 2013, IEEE Transactions on Image Processing.

[21]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[22]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[23]  Zuowei Shen,et al.  Deconvolution: a wavelet frame approach , 2007, Numerische Mathematik.

[24]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[25]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[26]  Junfeng Yang,et al.  A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration , 2009, SIAM J. Imaging Sci..

[27]  Jian-Feng Cai,et al.  Two-phase approach for deblurring images corrupted by impulse plus gaussian noise , 2008 .

[28]  M. Hestenes Multiplier and gradient methods , 1969 .

[29]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[30]  Nahum Kiryati,et al.  Deblurring of Color Images Corrupted by Impulsive Noise , 2007, IEEE Transactions on Image Processing.

[31]  Jian-Feng Cai,et al.  Simultaneous cartoon and texture inpainting , 2010 .

[32]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[33]  Hui Ji,et al.  Wavelet frame based blind image inpainting , 2012 .

[34]  Zuowei Shen Wavelet Frames and Image Restorations , 2011 .

[35]  Mila Nikolova,et al.  Regularizing Flows for Constrained Matrix-Valued Images , 2004, Journal of Mathematical Imaging and Vision.

[36]  R. Chan,et al.  A framelet algorithm for enhancing video stills , 2007 .

[37]  Jian-Feng Cai,et al.  A framelet-based image inpainting algorithm , 2008 .

[38]  Hyenkyun Woo,et al.  Non-convex hybrid total variation for image denoising , 2013, J. Vis. Commun. Image Represent..

[39]  Yiqiu Dong,et al.  An Efficient Primal-Dual Method for L1TV Image Restoration , 2009, SIAM J. Imaging Sci..

[40]  Jian-Feng Cai,et al.  Framelet based deconvolution , 2010 .

[41]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[42]  Nahum Kiryati,et al.  Image Deblurring in the Presence of Salt-and-Pepper Noise , 2005, Scale-Space.

[43]  R. Jia,et al.  Applied and Computational Harmonic Analysis Convergence Analysis of the Bregman Method for the Variational Model of Image Denoising , 2022 .

[44]  Xuecheng Tai,et al.  AUGMENTED LAGRANGIAN METHOD FOR TOTAL VARIATION RESTORATION WITH NON-QUADRATIC FIDELITY , 2011 .

[45]  Raymond H. Chan,et al.  Restoration of Chopped and Nodded Images by Framelets , 2008, SIAM J. Sci. Comput..

[46]  Raymond H. Chan,et al.  Fast Two-Phase Image Deblurring Under Impulse Noise , 2009, Journal of Mathematical Imaging and Vision.