Physically valid statistical models for human motion generation

This article shows how statistical motion priors can be combined seamlessly with physical constraints for human motion modeling and generation. The key idea of the approach is to learn a nonlinear probabilistic force field function from prerecorded motion data with Gaussian processes and combine it with physical constraints in a probabilistic framework. In addition, we show how to effectively utilize the new model to generate a wide range of natural-looking motions that achieve the goals specified by users. Unlike previous statistical motion models, our model can generate physically realistic animations that react to external forces or changes in physical quantities of human bodies and interaction environments. We have evaluated the performance of our system by comparing against ground-truth motion data and alternative methods.

[1]  Zicheng Liu,et al.  Hierarchical spacetime control , 1994, SIGGRAPH.

[2]  Jessica K. Hodgins,et al.  Motion capture-driven simulations that hit and react , 2002, SCA '02.

[3]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[4]  C. Karen Liu,et al.  Animating responsive characters with dynamic constraints in near-unactuated coordinates , 2008, SIGGRAPH 2008.

[5]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms, 3/E. , 2019 .

[6]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[7]  C. Karen Liu,et al.  Synthesis of Responsive Motion Using a Dynamic Model , 2010, Comput. Graph. Forum.

[8]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[9]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[10]  Zoran Popović,et al.  Contact-aware nonlinear control of dynamic characters , 2009, SIGGRAPH 2009.

[11]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[12]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[13]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[14]  Yen-Lin Chen,et al.  Interactive generation of human animation with deformable motion models , 2009, TOGS.

[15]  Michael F. Cohen,et al.  Interactive spacetime control for animation , 1992, SIGGRAPH.

[16]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[17]  Jovan Popovic,et al.  Adaptation of performed ballistic motion , 2005, TOGS.

[18]  C. Karen Liu,et al.  Animating responsive characters with dynamic constraints in near-unactuated coordinates , 2008, ACM Trans. Graph..

[19]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[20]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[21]  Reza N. Jazar Theory of Applied Robotics: Kinematics, Dynamics, and Control , 2007 .

[22]  Jinxiang Chai,et al.  Intuitive Interactive Human-Character Posing with Millions of Example Poses , 2011, IEEE Computer Graphics and Applications.

[23]  Jinxiang Chai,et al.  VideoMocap: modeling physically realistic human motion from monocular video sequences , 2010, SIGGRAPH 2010.

[24]  E. Bizzi,et al.  Article history: , 2005 .

[25]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, SIGGRAPH 2004.

[26]  Zoran Popovic,et al.  Contact-aware nonlinear control of dynamic characters , 2009, ACM Trans. Graph..

[27]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[28]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[29]  Jessica K. Hodgins,et al.  Constraint-based motion optimization using a statistical dynamic model , 2007, ACM Trans. Graph..

[30]  Tomohiko Mukai,et al.  Geostatistical motion interpolation , 2005, SIGGRAPH '05.

[31]  Harry Shum,et al.  Motion texture: a two-level statistical model for character motion synthesis , 2002, ACM Trans. Graph..

[32]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[33]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, ACM Trans. Graph..

[34]  Jessica K. Hodgins,et al.  Constraint-based motion optimization using a statistical dynamic model , 2007, SIGGRAPH 2007.

[35]  Ziv Bar-Joseph,et al.  Modeling spatial and temporal variation in motion data , 2009, ACM Trans. Graph..

[36]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, ACM Trans. Graph..

[37]  Francesco Lacquaniti,et al.  Control of Fast-Reaching Movements by Muscle Synergy Combinations , 2006, The Journal of Neuroscience.

[38]  Nancy S. Pollard,et al.  Animation of Humanlike Characters: Dynamic Motion Filtering with a Physically Plausible Contact Model , 2001 .

[39]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[40]  Jessica K. Hodgins,et al.  Performance animation from low-dimensional control signals , 2005, SIGGRAPH 2005.

[41]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, SIGGRAPH 2007.

[42]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[43]  M. V. D. Panne,et al.  SIMBICON: simple biped locomotion control , 2007, SIGGRAPH 2007.

[44]  Xiaolin K. Wei,et al.  VideoMocap: modeling physically realistic human motion from monocular video sequences , 2010, ACM Trans. Graph..

[45]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[46]  Jinxiang Chai,et al.  Synthesis and editing of personalized stylistic human motion , 2010, I3D '10.

[47]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, SIGGRAPH 2004.