The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure
暂无分享,去创建一个
[1] Boschek Cb. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .
[2] O. Trujillo-Cenóz,et al. Light and electronmicroscope study of one of the systems of centrifugal fibers found in the lamina of muscoid flies , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[3] G. Stent. Strength and weakness of the genetic approach to the development of the nervous system. , 1981, Annual review of neuroscience.
[4] Martin Heisenberg,et al. The three-dimensional optomotor torque system ofDrosophila melanogaster , 1982, Journal of comparative physiology.
[5] K. Fischbach,et al. Habituation and Sensitization of the Landing Response of Drosophila Melanogaster : II. Receptive Field Size of Habituating Units , 1988 .
[6] M. Colonnier. THE TANGENTIAL ORGANIZATION OF THE VISUAL CORTEX. , 1964, Journal of anatomy.
[7] R. Pierantoni,et al. A look into the cock-pit of the fly , 1976, Cell and Tissue Research.
[8] W. Ribi. The first optic ganglion of the bee , 1979, Cell and Tissue Research.
[9] N. J. Strausfeld,et al. The columnar organization of the second synaptic region of the visual system of Musca domestica L. , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[10] N. Strausfeld,et al. The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[11] N. J. Strausfeld,et al. The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[12] N. Strausfeld,et al. Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light , 1985, Cell and Tissue Research.
[13] N. Franceschini,et al. Sexual dimorphism in a photoreceptor , 1981, Nature.
[14] Gerald M. Rubin,et al. disconnected: A locus required for neuronal pathway formation in the visual system of drosophila , 1987, Cell.
[15] T. Collett,et al. Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.
[16] N. Strausfeld. The Golgi Method: Its Application to the Insect Nervous System and the Phenomenon of Stochastic Impregnation , 1980 .
[17] W. Oertel,et al. Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster , 1988, Cell and Tissue Research.
[18] D. Nässel,et al. Postembryonic development of serotonin-immunoreactive neurons in the central nervous system of the blowfly, Calliphora erythrocephala , 1987, Cell and Tissue Research.
[19] K. Fischbach. Neural cell types surviving congenital sensory deprivation in the optic lobes of Drosophila melanogaster. , 1983, Developmental biology.
[20] R. Robertson,et al. Neuronal Circuits: An Evolutionary Perspective , 1986, Science.
[21] N. J. Strausfeld,et al. Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .
[22] N. Strausfeld. The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[23] R. Stocker,et al. Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster , 2004, Cell and Tissue Research.
[24] V. Braitenberg,et al. A regular net of reciprocal synapses in the visual system of the fly,Musca domestica , 1974, Journal of comparative physiology.
[25] C A Stuermer,et al. Trajectories of regenerating retinal axons in the goldfish tectum: II. Exploratory branches and growth cones on axons at early regeneration stages , 1988, The Journal of comparative neurology.
[26] I. Meinertzhagen. Fly photoreceptor synapses: their development, evolution, and plasticity. , 1989, Journal of neurobiology.
[27] F. Zettler,et al. Immunocytochemical demonstration ofγ-amino butyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system , 1986, Journal of Comparative Physiology A.
[28] S. Benzer,et al. From the gene to behavior. , 1971, JAMA.
[29] P. Sivasubramanian,et al. Postembryonic differentiation of serotonin‐immunoreactive neurons in fleshfly optic lobes developing in situ or cultured in vivo without eye discs , 1987, The Journal of comparative neurology.
[30] I A Meinertzhagen,et al. Evolutionary progression at synaptic connections made by identified homologous neurones. , 1986, Proceedings of the National Academy of Sciences of the United States of America.
[31] S. Garen,et al. Golgi and genetic mosaic analyses of visual system mutants in Drosophila melanogaster. , 1983, Developmental biology.
[32] G. Schlosser,et al. Developmental Studies on the Optic Lobe of Drosophila Melanogaster Using Structural Brain Mutants , 1989 .
[33] R. Hardie. Is histamine a neurotransmitter in insect photoreceptors? , 1987, Journal of Comparative Physiology A.
[34] T. Tully. On the Road to a Better Understanding of Learning and Memory in Drosophila Melanogaster , 1988 .
[35] E. Meyer,et al. Mapping and ultrastructure of serotonin‐immunoreactive neurons in the optic lobes of three insect species , 1985, The Journal of comparative neurology.
[36] S. Shaw. Early visual processing in insects. , 1984, The Journal of experimental biology.
[37] N. Strausfeld,et al. Columns and Layers in the Second Synaptic Region of the Fly’s Visual System: The Case for Two Superimposed Neuronal Architectures , 1972 .
[38] N. Strausfeld,et al. Cobalt-coupled neurons of a giant fibre system in Diptera , 1983, Journal of neurocytology.
[39] N. J. Strausfeld,et al. Some Interrelationships between the First and Second Synaptic Regions of the Fly’s (Musca domestica L.) Visual System , 1972 .
[40] M. Heisenberg. Mutants of brain structure and function: what is the significance of the mushroom bodies for behavior? , 1980, Basic life sciences.
[41] W. Harris,et al. Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster , 1976, The Journal of physiology.
[42] Margaret M. Bird,et al. Developmental Order: Its Origin and Regulation , 1983 .
[43] N. Strausfeld,et al. Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. , 1977, Science.
[44] M. E. Power. The effect of reduction in numbers of ommatidia upon the brain of Drosophila melanogaster , 1943 .
[45] Isabelle Bülthoff,et al. Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 1984, Journal of Comparative Physiology A.
[46] N. J. Strausfeld,et al. The resolution of neuronal assemblies after cobalt injection into neuropil , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[47] Jeffrey C. Hall,et al. An inducible promoter fused to the period gene in Drosophila conditionally rescues adult per-mutant arrhythmicity , 1988, Nature.
[48] N. Strausfeld,et al. L3, the 3rd 2nd order neuron of the 1st visual ganglion in the “neural superposition” eye of Musca domestica , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[49] N. Strausfeld,et al. The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L.). , 1973, Brain research.
[50] R. Hardie,et al. Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies Calliphora erythrocephala and Musca domestica , 1988, Cell and Tissue Research.
[51] Bertil Hanström. Vergleichende Anatomie des Nervensystems der wirbellosen Tiere: unter Berücksichtigung seiner Funktion , 1929, Nature.
[52] N. Strausfeld. The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[53] Nicholas J. Strausfeld,et al. The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris , 1970, Zeitschrift für vergleichende Physiologie.
[54] V. Braitenberg,et al. Patterns of projection in the visual system of the fly II. Quantitative aspects of second order neurons in relation to models of movement perception , 2004, Experimental Brain Research.
[55] Santiago Ramón y Cajal,et al. Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .
[56] N. Strausfeld,et al. Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly's eye. , 1973, Brain research.
[57] O. Trujillo-Cenóz. Some aspects of the structural organization of the intermediate retina of dipterans. , 1965, Journal of ultrastructure research.
[58] K. Kirschfeld,et al. Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.
[59] D. Nässel,et al. Neural differentiation in fly CNS transplants cultured in vivo , 1983 .
[60] R. Wyman,et al. Motor outputs of giant nerve fiber in Drosophila. , 1980, Journal of neurophysiology.
[61] N. Strausfeld. Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.
[62] A. D. Blest. Some Modifications of Holmes's Silver Method for Insect Central Nervous Systems , 1961 .
[63] M S Livingstone,et al. Learning and memory in Drosophila, studied with mutants. , 1983, Cold Spring Harbor symposia on quantitative biology.
[64] K. Fischbach,et al. Genetic and developmental analysis of irreC, a genetic function required for optic chiasm formation in Drosophila. , 1990, Journal of neurogenetics.
[65] C. Goodman. Neuron duplications and deletions in locust clones and clutches. , 1977, Science.
[66] J. Brockes. Synaptic connections , 1977, Nature.
[67] G. Technau,et al. Pre-existing neuronal pathways in the developing optic lobes of Drosophila. , 1989, Development.
[68] G. Bruce Boschek,et al. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.
[69] I A Meinertzhagen,et al. An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly , 1982, The Journal of comparative neurology.
[70] N. J. Strausfeld,et al. Male and female visual neurones in dipterous insects , 1980, Nature.
[71] M Heisenberg,et al. Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. , 1981, Proceedings of the National Academy of Sciences of the United States of America.
[72] V. Braitenberg,et al. Some peculiar synaptic complexes in the first visual ganglion of the fly, Musca domestica , 1976, Cell and Tissue Research.
[73] Mariana Hagberg,et al. A new, possibly serotonergic, neuron in the lamina of the blowfly optic lobe: an immunocytochemical and Golgi-EM study , 1983, Brain Research.
[74] S. Wada. Spezielle randzonale ommatidien von Calliphora Erythrocephala meig. (diptera calliphoridae): Architektur der zentralen rhabdomeren-kolumne und topographie im komplexauge , 1974 .
[75] W. J. Bell,et al. Comprehensive Insect Physiology, Biochemistry and Pharmacology , 1985 .
[76] Isabelle Bülthoff,et al. Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 2004, Journal of Comparative Physiology A.
[77] J. C. Hall,et al. Genetics of the nervous system in Drosophila , 1982, Quarterly Reviews of Biophysics.
[78] C. Levinthal,et al. Structure and development of neuronal connections in isogenic organisms: variations and similarities in the optic system of Daphnia magna. , 1973, Proceedings of the National Academy of Sciences of the United States of America.
[79] R. Wolf,et al. Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.
[80] E. Buchner,et al. Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster , 1986, Cell and Tissue Research.
[81] Martin Heisenberg,et al. Neural reorganization during metamorphosis of the corpora pedunculata in Drosophila melanogaster , 1982, Nature.
[82] M. Heisenberg,et al. Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.
[83] D. Nässel. Serotonin and serotonin-immunoreactive neurons in the nervous system of insects , 1988, Progress in Neurobiology.
[84] I A Meinertzhagen,et al. Anatomical plasticity of synapses in the lamina of the optic lobe of the fly. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.
[85] J. Dowling,et al. Cellular and synaptic organization in the lamina of the dragon-fly Sympetrum rubicundulum , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[86] Roger C. Hardie,et al. The photoreceptor array of the dipteran retina , 1986, Trends in Neurosciences.
[87] K. Fischbach,et al. T-maze phototaxis ofDrosophila melanogaster and several mutants in the visual systems , 2004, Journal of comparative physiology.
[88] Nicholas J. Strausfeld,et al. Sexually dimorphic interneuron arrangements in the fly visual system , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[89] Nicholas J. Strausfeld,et al. Organizational principles of outputs from Dipteran brains , 1984 .
[90] K. Hausen. Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .
[91] K. Fischbach,et al. Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants of Drosophila melanogaster. , 1984, Developmental biology.
[92] Rüdiger Wehner,et al. Celestial and Terrestrial Navigation: Human Strategies — Insect Strategies , 1983 .
[93] R. Konopka,et al. Mosaic analysis of a Drosophila clock mutant , 1983, Molecular and General Genetics MGG.
[94] K. Fischbach,et al. Genetic dissection of the anterior optic tract of Drosophila melanogaster , 2004, Cell and Tissue Research.
[95] Martin Heisenberg,et al. The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.
[96] V. Braitenberg. Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.
[97] R. Hardie. Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica) , 2004, Cell and Tissue Research.
[98] C. Götz,et al. Das Experiment: Ein Blick ins Fliegengehirn: Golgi‐gefärbte Nervenzellen bei Drosophila , 1981 .
[99] R. Hardie,et al. Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora , 1984, Journal of Comparative Physiology A.
[100] I. Bülthoff. Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. 2. Optomotor blind H31 and lobula plate-less N684 visual mutants. , 1985 .
[101] M. Heisenberg,et al. Neurogenetics and Behaviour in Insects , 1984 .
[102] W. Stark,et al. Specific receptor input into spectral preference inDrosophila , 2004, Journal of comparative physiology.
[103] K. Kirschfeld. DAS NEURALE SUPERPOSITIONSAUGE , 1973 .
[104] W. Ribi. The first optic ganglion of the bee , 2004, Cell and Tissue Research.