The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure

SummaryGolgi studies of the neurons in the optic lobes of Drosophila melanogaster reveal a large number of neuronal cell types. These can be classified as either columnar or tangential. Columnar elements establish the retinotopic maps of the lamina, medulla, and lobula-complex neuropiles. They are classified according to the position of their cell bodies, the number, width, and level of their arborizations, and their projection areas. Tangential elements are oriented perpendicularly to the columns. The arborizations of different tangential neurons are restricted to different layers of the optic neuropiles, within such layers their dendritic fields may span the entire retinotopic field or only part of it. The abundance of cell types inside each of the columnar units of the optic lobe is discussed with regard to its possible functional significance. By means of their stratified arborizations the columnar neurons form what appear to be multiple sets of retinotopically organized parallel information processing networks. It is suggested that these parallel networks filter different kinds of visual information and thus represent structurally separated functional subunits of the optic lobe. Such a parallel organization of visual functions increases the sites for function-specific gene actions and may explain the behavioral phenotypes of recently isolated structural mutants of the optic lobe.

[1]  Boschek Cb On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. , 1971 .

[2]  O. Trujillo-Cenóz,et al.  Light and electronmicroscope study of one of the systems of centrifugal fibers found in the lamina of muscoid flies , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[3]  G. Stent Strength and weakness of the genetic approach to the development of the nervous system. , 1981, Annual review of neuroscience.

[4]  Martin Heisenberg,et al.  The three-dimensional optomotor torque system ofDrosophila melanogaster , 1982, Journal of comparative physiology.

[5]  K. Fischbach,et al.  Habituation and Sensitization of the Landing Response of Drosophila Melanogaster : II. Receptive Field Size of Habituating Units , 1988 .

[6]  M. Colonnier THE TANGENTIAL ORGANIZATION OF THE VISUAL CORTEX. , 1964, Journal of anatomy.

[7]  R. Pierantoni,et al.  A look into the cock-pit of the fly , 1976, Cell and Tissue Research.

[8]  W. Ribi The first optic ganglion of the bee , 1979, Cell and Tissue Research.

[9]  N. J. Strausfeld,et al.  The columnar organization of the second synaptic region of the visual system of Musca domestica L. , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[10]  N. Strausfeld,et al.  The optic lobes of Lepidoptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  N. J. Strausfeld,et al.  The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[12]  N. Strausfeld,et al.  Optic lobe projections of marginal ommatidia in Calliphora erythrocephala specialized for detecting polarized light , 1985, Cell and Tissue Research.

[13]  N. Franceschini,et al.  Sexual dimorphism in a photoreceptor , 1981, Nature.

[14]  Gerald M. Rubin,et al.  disconnected: A locus required for neuronal pathway formation in the visual system of drosophila , 1987, Cell.

[15]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[16]  N. Strausfeld The Golgi Method: Its Application to the Insect Nervous System and the Phenomenon of Stochastic Impregnation , 1980 .

[17]  W. Oertel,et al.  Cell-specific immuno-probes for the brain of normal and mutant Drosophila melanogaster , 1988, Cell and Tissue Research.

[18]  D. Nässel,et al.  Postembryonic development of serotonin-immunoreactive neurons in the central nervous system of the blowfly, Calliphora erythrocephala , 1987, Cell and Tissue Research.

[19]  K. Fischbach Neural cell types surviving congenital sensory deprivation in the optic lobes of Drosophila melanogaster. , 1983, Developmental biology.

[20]  R. Robertson,et al.  Neuronal Circuits: An Evolutionary Perspective , 1986, Science.

[21]  N. J. Strausfeld,et al.  Functional Neuroanatomy of the Blowfly’s Visual System , 1984 .

[22]  N. Strausfeld The optic lobes of Diptera. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  R. Stocker,et al.  Projection patterns of different types of antennal sensilla in the antennal glomeruli of Drosophila melanogaster , 2004, Cell and Tissue Research.

[24]  V. Braitenberg,et al.  A regular net of reciprocal synapses in the visual system of the fly,Musca domestica , 1974, Journal of comparative physiology.

[25]  C A Stuermer,et al.  Trajectories of regenerating retinal axons in the goldfish tectum: II. Exploratory branches and growth cones on axons at early regeneration stages , 1988, The Journal of comparative neurology.

[26]  I. Meinertzhagen Fly photoreceptor synapses: their development, evolution, and plasticity. , 1989, Journal of neurobiology.

[27]  F. Zettler,et al.  Immunocytochemical demonstration ofγ-amino butyric acid and glutamic acid decarboxylase in R7 photoreceptors and C2 centrifugal fibres in the blowfly visual system , 1986, Journal of Comparative Physiology A.

[28]  S. Benzer,et al.  From the gene to behavior. , 1971, JAMA.

[29]  P. Sivasubramanian,et al.  Postembryonic differentiation of serotonin‐immunoreactive neurons in fleshfly optic lobes developing in situ or cultured in vivo without eye discs , 1987, The Journal of comparative neurology.

[30]  I A Meinertzhagen,et al.  Evolutionary progression at synaptic connections made by identified homologous neurones. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Garen,et al.  Golgi and genetic mosaic analyses of visual system mutants in Drosophila melanogaster. , 1983, Developmental biology.

[32]  G. Schlosser,et al.  Developmental Studies on the Optic Lobe of Drosophila Melanogaster Using Structural Brain Mutants , 1989 .

[33]  R. Hardie Is histamine a neurotransmitter in insect photoreceptors? , 1987, Journal of Comparative Physiology A.

[34]  T. Tully On the Road to a Better Understanding of Learning and Memory in Drosophila Melanogaster , 1988 .

[35]  E. Meyer,et al.  Mapping and ultrastructure of serotonin‐immunoreactive neurons in the optic lobes of three insect species , 1985, The Journal of comparative neurology.

[36]  S. Shaw Early visual processing in insects. , 1984, The Journal of experimental biology.

[37]  N. Strausfeld,et al.  Columns and Layers in the Second Synaptic Region of the Fly’s Visual System: The Case for Two Superimposed Neuronal Architectures , 1972 .

[38]  N. Strausfeld,et al.  Cobalt-coupled neurons of a giant fibre system in Diptera , 1983, Journal of neurocytology.

[39]  N. J. Strausfeld,et al.  Some Interrelationships between the First and Second Synaptic Regions of the Fly’s (Musca domestica L.) Visual System , 1972 .

[40]  M. Heisenberg Mutants of brain structure and function: what is the significance of the mushroom bodies for behavior? , 1980, Basic life sciences.

[41]  W. Harris,et al.  Genetic dissection of the photoreceptor system in the compound eye of Drosophila melanogaster , 1976, The Journal of physiology.

[42]  Margaret M. Bird,et al.  Developmental Order: Its Origin and Regulation , 1983 .

[43]  N. Strausfeld,et al.  Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. , 1977, Science.

[44]  M. E. Power The effect of reduction in numbers of ommatidia upon the brain of Drosophila melanogaster , 1943 .

[45]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 1984, Journal of Comparative Physiology A.

[46]  N. J. Strausfeld,et al.  The resolution of neuronal assemblies after cobalt injection into neuropil , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[47]  Jeffrey C. Hall,et al.  An inducible promoter fused to the period gene in Drosophila conditionally rescues adult per-mutant arrhythmicity , 1988, Nature.

[48]  N. Strausfeld,et al.  L3, the 3rd 2nd order neuron of the 1st visual ganglion in the “neural superposition” eye of Musca domestica , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[49]  N. Strausfeld,et al.  The L4 monopolar neurone: a substrate for lateral interaction in the visual system of the fly Musca domestica (L.). , 1973, Brain research.

[50]  R. Hardie,et al.  Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies Calliphora erythrocephala and Musca domestica , 1988, Cell and Tissue Research.

[51]  Bertil Hanström Vergleichende Anatomie des Nervensystems der wirbellosen Tiere: unter Berücksichtigung seiner Funktion , 1929, Nature.

[52]  N. Strausfeld The organization of the insect visual system (Light microscopy) , 1971, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[53]  Nicholas J. Strausfeld,et al.  The compound eye of the fly (Musca domestica): connections between the cartridges of the lamina ganglionaris , 1970, Zeitschrift für vergleichende Physiologie.

[54]  V. Braitenberg,et al.  Patterns of projection in the visual system of the fly II. Quantitative aspects of second order neurons in relation to models of movement perception , 2004, Experimental Brain Research.

[55]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[56]  N. Strausfeld,et al.  Synaptic connections of intrinsic cells and basket arborizations in the external plexiform layer of the fly's eye. , 1973, Brain research.

[57]  O. Trujillo-Cenóz Some aspects of the structural organization of the intermediate retina of dipterans. , 1965, Journal of ultrastructure research.

[58]  K. Kirschfeld,et al.  Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.

[59]  D. Nässel,et al.  Neural differentiation in fly CNS transplants cultured in vivo , 1983 .

[60]  R. Wyman,et al.  Motor outputs of giant nerve fiber in Drosophila. , 1980, Journal of neurophysiology.

[61]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[62]  A. D. Blest Some Modifications of Holmes's Silver Method for Insect Central Nervous Systems , 1961 .

[63]  M S Livingstone,et al.  Learning and memory in Drosophila, studied with mutants. , 1983, Cold Spring Harbor symposia on quantitative biology.

[64]  K. Fischbach,et al.  Genetic and developmental analysis of irreC, a genetic function required for optic chiasm formation in Drosophila. , 1990, Journal of neurogenetics.

[65]  C. Goodman Neuron duplications and deletions in locust clones and clutches. , 1977, Science.

[66]  J. Brockes Synaptic connections , 1977, Nature.

[67]  G. Technau,et al.  Pre-existing neuronal pathways in the developing optic lobes of Drosophila. , 1989, Development.

[68]  G. Bruce Boschek,et al.  On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[69]  I A Meinertzhagen,et al.  An analysis of the number and composition of the synaptic populations formed by photoreceptors of the fly , 1982, The Journal of comparative neurology.

[70]  N. J. Strausfeld,et al.  Male and female visual neurones in dipterous insects , 1980, Nature.

[71]  M Heisenberg,et al.  Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[72]  V. Braitenberg,et al.  Some peculiar synaptic complexes in the first visual ganglion of the fly, Musca domestica , 1976, Cell and Tissue Research.

[73]  Mariana Hagberg,et al.  A new, possibly serotonergic, neuron in the lamina of the blowfly optic lobe: an immunocytochemical and Golgi-EM study , 1983, Brain Research.

[74]  S. Wada Spezielle randzonale ommatidien von Calliphora Erythrocephala meig. (diptera calliphoridae): Architektur der zentralen rhabdomeren-kolumne und topographie im komplexauge , 1974 .

[75]  W. J. Bell,et al.  Comprehensive Insect Physiology, Biochemistry and Pharmacology , 1985 .

[76]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 2004, Journal of Comparative Physiology A.

[77]  J. C. Hall,et al.  Genetics of the nervous system in Drosophila , 1982, Quarterly Reviews of Biophysics.

[78]  C. Levinthal,et al.  Structure and development of neuronal connections in isogenic organisms: variations and similarities in the optic system of Daphnia magna. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[80]  E. Buchner,et al.  Choline acetyltransferase-like immunoreactivity in the brain of Drosophila melanogaster , 1986, Cell and Tissue Research.

[81]  Martin Heisenberg,et al.  Neural reorganization during metamorphosis of the corpora pedunculata in Drosophila melanogaster , 1982, Nature.

[82]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[83]  D. Nässel Serotonin and serotonin-immunoreactive neurons in the nervous system of insects , 1988, Progress in Neurobiology.

[84]  I A Meinertzhagen,et al.  Anatomical plasticity of synapses in the lamina of the optic lobe of the fly. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[85]  J. Dowling,et al.  Cellular and synaptic organization in the lamina of the dragon-fly Sympetrum rubicundulum , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[86]  Roger C. Hardie,et al.  The photoreceptor array of the dipteran retina , 1986, Trends in Neurosciences.

[87]  K. Fischbach,et al.  T-maze phototaxis ofDrosophila melanogaster and several mutants in the visual systems , 2004, Journal of comparative physiology.

[88]  Nicholas J. Strausfeld,et al.  Sexually dimorphic interneuron arrangements in the fly visual system , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[89]  Nicholas J. Strausfeld,et al.  Organizational principles of outputs from Dipteran brains , 1984 .

[90]  K. Hausen Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .

[91]  K. Fischbach,et al.  Cell degeneration in the developing optic lobes of the sine oculis and small-optic-lobes mutants of Drosophila melanogaster. , 1984, Developmental biology.

[92]  Rüdiger Wehner,et al.  Celestial and Terrestrial Navigation: Human Strategies — Insect Strategies , 1983 .

[93]  R. Konopka,et al.  Mosaic analysis of a Drosophila clock mutant , 1983, Molecular and General Genetics MGG.

[94]  K. Fischbach,et al.  Genetic dissection of the anterior optic tract of Drosophila melanogaster , 2004, Cell and Tissue Research.

[95]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[96]  V. Braitenberg Patterns of projection in the visual system of the fly. I. Retina-lamina projections , 2004, Experimental Brain Research.

[97]  R. Hardie Projection and connectivity of sex-specific photoreceptors in the compound eye of the male housefly (Musca domestica) , 2004, Cell and Tissue Research.

[98]  C. Götz,et al.  Das Experiment: Ein Blick ins Fliegengehirn: Golgi‐gefärbte Nervenzellen bei Drosophila , 1981 .

[99]  R. Hardie,et al.  Properties of photoreceptors R7 and R8 in dorsal marginal ommatidia in the compound eyes ofMusca andCalliphora , 1984, Journal of Comparative Physiology A.

[100]  I. Bülthoff Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. 2. Optomotor blind H31 and lobula plate-less N684 visual mutants. , 1985 .

[101]  M. Heisenberg,et al.  Neurogenetics and Behaviour in Insects , 1984 .

[102]  W. Stark,et al.  Specific receptor input into spectral preference inDrosophila , 2004, Journal of comparative physiology.

[103]  K. Kirschfeld DAS NEURALE SUPERPOSITIONSAUGE , 1973 .

[104]  W. Ribi The first optic ganglion of the bee , 2004, Cell and Tissue Research.