Numerical analysis for time-dependent advection-diffusion problems with random discontinuous coefficients

Subsurface flows are commonly modeled by advection-diffusion equations. Insufficient measurements or uncertain material procurement may be accounted for by random coefficients. To represent, for example, transitions in heterogeneous media, the parameters of the equation are spatially discontinuous. Specifically, a scenario with coupled advection- and diffusion coefficients that are modeled as sums of continuous random fields and discontinuous jump components are considered. For the numerical approximation of the solution, an adaptive, pathwise discretization scheme based on a Finite Element approach is introduced. To stabilize the numerical approximation and accelerate convergence, the discrete space-time grid is chosen with respect to the varying discontinuities in each sample of the coefficients, leading to a stochastic formulation of the Galerkin projection and the Finite Element basis.

[1]  Tao Zhou,et al.  Stochastic Galerkin methods for elliptic interface problems with random input , 2011, J. Comput. Appl. Math..

[2]  A. Peirce Computer Methods in Applied Mechanics and Engineering , 2010 .

[3]  P. Nair,et al.  SOME A PRIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF ELLIPTIC AND PARABOLIC LINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS , 2014 .

[4]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[5]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[6]  Martin Eigel,et al.  An Adaptive Multilevel Monte Carlo Method with Stochastic Bounds for Quantities of Interest with Uncertain Data , 2016, SIAM/ASA J. Uncertain. Quantification.

[7]  Raúl Tempone,et al.  Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations , 2004, SIAM J. Numer. Anal..

[8]  Denis S. Grebenkov,et al.  Geometrical Structure of Laplacian Eigenfunctions , 2012, SIAM Rev..

[9]  George Stefanou,et al.  Assessment of spectral representation and Karhunen–Loève expansion methods for the simulation of Gaussian stochastic fields , 2007 .

[10]  Kurt Maute,et al.  Heaviside enriched extended stochastic FEM for problems with uncertain material interfaces , 2015 .

[11]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[12]  Martin Petzoldt,et al.  A Posteriori Error Estimators for Elliptic Equations with Discontinuous Coefficients , 2002, Adv. Comput. Math..

[13]  Claude Jeffrey Gittelson,et al.  Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.

[14]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[15]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[16]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[17]  Serge Nicaise,et al.  General Interface Problems-II , 1994 .

[18]  Guannan Zhang,et al.  Error Analysis of a Stochastic Collocation Method for Parabolic Partial Differential Equations with Random Input Data , 2012, SIAM J. Numer. Anal..

[19]  Assyr Abdulle,et al.  Multilevel Monte Carlo Methods for Stochastic Elliptic Multiscale PDEs , 2013, Multiscale Model. Simul..

[20]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[21]  Daniel M. Tartakovsky,et al.  Stochastic Collocation Methods for Nonlinear Parabolic Equations with Random Coefficients , 2016, SIAM/ASA J. Uncertain. Quantification.

[22]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[23]  Elisabeth Ullmann,et al.  Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients , 2012, Numerische Mathematik.

[24]  A. Stein,et al.  Approximation and simulation of infinite-dimensional Lévy processes , 2016, Stochastics and Partial Differential Equations: Analysis and Computations.

[25]  Frances Y. Kuo,et al.  Circulant embedding with QMC: analysis for elliptic PDE with lognormal coefficients , 2018, Numerische Mathematik.

[26]  M. Petzoldt Regularity Results for Laplace Interface Problems in Two Dimensions , 2001 .

[27]  Helmut Harbrecht,et al.  First order second moment analysis for stochastic interface problems based on low-rank approximation , 2013 .

[28]  Christoph Schwab,et al.  Sparse Tensor Galerkin Discretization of Parametric and Random Parabolic PDEs - Analytic Regularity and Generalized Polynomial Chaos Approximation , 2013, SIAM J. Math. Anal..

[29]  Robert Scheichl,et al.  Finite Element Error Analysis of Elliptic PDEs with Random Coefficients and Its Application to Multilevel Monte Carlo Methods , 2013, SIAM J. Numer. Anal..

[30]  Francesca Rapetti,et al.  Basics and some applications of the mortar element method , 2005 .

[31]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[32]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[33]  Ralf Kornhuber,et al.  Adaptive Multilevel Monte Carlo Methods for Stochastic Variational Inequalities , 2016, SIAM J. Numer. Anal..

[34]  Andrea Barth,et al.  A Study of Elliptic Partial Differential Equations with Jump Diffusion Coefficients , 2017, SIAM/ASA J. Uncertain. Quantification.

[35]  Christoph Schwab,et al.  Finite Elements with mesh refinement for wave equations in polygons , 2013, J. Comput. Appl. Math..

[36]  Barbara I. Wohlmuth,et al.  A Mortar Finite Element Method Using Dual Spaces for the Lagrange Multiplier , 2000, SIAM J. Numer. Anal..

[37]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[38]  Kai Zhang,et al.  Multi-level Monte Carlo weak Galerkin method for elliptic equations with stochastic jump coefficients , 2016, Appl. Math. Comput..

[39]  James A. Nichols,et al.  Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients , 2015, Numerische Mathematik.

[40]  Wolfgang Hackbusch,et al.  Elliptic Differential Equations: Theory and Numerical Treatment , 2017 .

[41]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[42]  Serge Nicaise,et al.  Polygonal interface problems:higher regularity results , 1990 .

[43]  Jürgen Potthoff,et al.  Fast simulation of Gaussian random fields , 2011, Monte Carlo Methods Appl..

[44]  K. A. Cliffe,et al.  Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients , 2011, Comput. Vis. Sci..

[45]  Andrea Barth,et al.  Multi-level Monte Carlo Finite Element method for elliptic PDEs with stochastic coefficients , 2011, Numerische Mathematik.

[46]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[47]  A. Barth,et al.  Simulation of stochastic partial differential equations using finite element methods , 2012 .

[48]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .

[49]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[50]  Raul Tempone,et al.  Analysis and implementation issues for the numerical approximation of parabolic equations with random coefficients , 2009 .

[51]  Julia Charrier,et al.  Strong and Weak Error Estimates for Elliptic Partial Differential Equations with Random Coefficients , 2012, SIAM J. Numer. Anal..

[52]  Gianluca Detommaso,et al.  Continuous Level Monte Carlo and Sample-Adaptive Model Hierarchies , 2018, SIAM/ASA J. Uncertain. Quantification.