Finding benchmark brown dwarfs to probe the substellar initial mass function as a function of time

Using a simulated disc brown dwarf (BD) population, we find that new large area infrared surveys are expected to identify enough BDs covering wide enough mass–age ranges to potentially measure the present day mass function down to ∼0.03 M⊙, and the BD formation history out to 10 Gyr, at a level that will be capable of establishing if BD formation follows star formation. We suggest these capabilities are best realized by spectroscopic calibration of BD properties (Teff, g and [M/H]) which when combined with a measured luminosity and an evolutionary model can give BD mass and age relatively independent of BD atmosphere models. Such calibration requires an empirical understanding of how BD spectra are affected by variations in these properties, and thus the identification and study of ‘benchmark BDs’ whose age and composition can be established independently. We identify the best sources of benchmark BDs as young open cluster members, moving group members, and wide (>1000 au) BD companions to both subgiant stars and high-mass white dwarfs (WDs). To accurately asses the likely number of wide companion BDs available, we have constrained the wide L dwarf companion fraction using the 2-Micron All Sky Survey (2MASS), and find a companion fraction of 2.7+0.7−0.5 per cent for separations of ∼1000–5000 au. This equates to a BD companion fraction of 34+9−6 per cent if one assumes an α∼ 1 companion mass function. Using this BD companion fraction, we simulate populations of wide BD binaries, and estimate that 80+21−14 subgiant–BD binaries, and 50+13−10 benchmark WD–BD binaries could be identified using current and new facilities. The WD–BD binaries should all be identifiable using the Large Area Survey component of the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey, combined with the Sloan Digital Sky Survey. Discovery of the subgiant–BD binaries will require a near-infrared imaging campaign around a large (∼900) sample of Hipparcos subgiants. If identified, spectral studies of these benchmark BD populations could reveal the spectral sensitivities across the Teff, g and [M/H] space probed by new surveys.

[1]  K. Ashman The formation of globular clusters and dark clusters. , 1990 .

[2]  J. Stauffer,et al.  Proper motion of very low mass stars and brown dwarfs in the Pleiades cluster , 2000, astro-ph/0012104.

[3]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[4]  The formation of a bound star cluster: from the orion nebula cluster to the pleiades , 2000, astro-ph/0009470.

[5]  B. Zuckerman,et al.  Companions to white dwarfs : very low-mass stars and the brown dwarf candidate GD 165B , 1992 .

[6]  James Liebert,et al.  Meeting the Cool Neighbors. V. A 2MASS-Selected Sample of Ultracool Dwarfs , 2003, astro-ph/0307429.

[7]  A. Moitinho,et al.  New catalogue of optically visible open clusters and candidates , 2002, astro-ph/0203351.

[8]  V. Kozhurina-Platais,et al.  WIYN Open Cluster Study. II. UBVRI CCD Photometry of the Open Cluster NGC 188 , 1999 .

[9]  Ipac,et al.  Three Wide-Separation L Dwarf Companions from the Two Micron All Sky Survey: Gliese 337C, Gliese 618.1B, and HD 89744B , 2001, astro-ph/0108424.

[10]  M. Bessell,et al.  UBVRI and Hα Photometry of the Young Open Cluster NGC 6231 , 1998 .

[11]  California Institute of Technology,et al.  A substellar mass function for Alpha Persei , 2002, astro-ph/0209032.

[12]  Michael S. Bessell,et al.  VRI photometry III: photographic and CCD R and I bands and the Kron-Cousins RI system , 1986 .

[13]  Kurtis A. Williams,et al.  An Empirical Initial-Final Mass Relation from Hot, Massive White Dwarfs in NGC 2168 (M35) , 2004, astro-ph/0409447.

[14]  D. Lamb,et al.  A Catalog of Spectroscopically Identified White Dwarf Stars in the First Data Release of the Sloan Digital Sky Survey , 2004, astro-ph/0402209.

[15]  P. H. Hauschildt,et al.  Infrared Spectra and Spectral Energy Distributions of Late M and L Dwarfs , 2000, astro-ph/0010174.

[16]  M. R. Burleigh,et al.  Imaging planets around nearby white dwarfs , 2002, astro-ph/0202194.

[17]  Binarity in Brown Dwarfs: T Dwarf Binaries Discovered with the Hubble Space Telescope Wide Field P , 2002, astro-ph/0211470.

[18]  James Liebert,et al.  The Two Micron All Sky Survey (2MASS): Overview and Status , 1997 .

[19]  A. Burgasser T Dwarfs and the Substellar Mass Function. I. Monte Carlo Simulations , 2004, astro-ph/0407624.

[20]  S. T. Hodgkin,et al.  A deep large‐area search for very low‐mass members of the Hyades open cluster , 2002 .

[21]  J. Holmberg,et al.  The solar neighborhood age-metallicity relation - Does it exist? , 2001, astro-ph/0108191.

[22]  Tucson,et al.  Praesepe and the seven white dwarfs , 2004, astro-ph/0410529.

[23]  M. Skrutskie,et al.  L Dwarfs and the Substellar Mass Function , 1999, astro-ph/9905170.

[24]  S. Hodgkin,et al.  On the properties of young multiple stars , 2004, astro-ph/0403094.

[25]  V. Kozhurina-Platais,et al.  A Search for Star Clusters from the Hipparcos Data , 1998 .

[26]  G. Chabrier The Galactic Disk Mass Budget. I. Stellar Mass Function and Density , 2001 .

[27]  D. James,et al.  Lithium in Blanco 1: Implications for Stellar Mixing , 1998, astro-ph/9809106.

[28]  A. Strobel Metallicities of open clusters , 1991 .

[29]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[30]  I. McLean,et al.  Identifying Young Brown Dwarfs Using Gravity-Sensitive Spectral Features , 2003, astro-ph/0309634.

[31]  I. Ribas The field brown dwarf LP 944-20 and the Castor moving group , 2003, astro-ph/0301063.

[32]  Brown Dwarf Companions to G-Type Stars. I. Gliese 417B and Gliese 584C , 2001, astro-ph/0103218.

[33]  An Intermittent Star Formation History in a "Normal" Disk Galaxy: The Milky Way. , 1999, The Astrophysical journal.

[34]  J. Clariá,et al.  Chemical Evolution of the Galactic Disk: Evidence for a Gradient Perpendicular to the Galactic Plane , 1995 .

[35]  Simon T. Hodgkin,et al.  A deep IZ survey of 1.1 deg2 of the Pleiades cluster: three candidate members with M < 0.04 Msolar , 2002 .

[36]  I. Reid,et al.  The First Substellar Subdwarf? Discovery of a Metal-poor L Dwarf with Halo Kinematics , 2003, astro-ph/0304174.

[37]  Measuring Fundamental Parameters of Substellar Objects. I. Surface Gravities , 2004, astro-ph/0403265.

[38]  I. Steele,et al.  Crossing into the substellar regime in Praesepe , 2005, astro-ph/0506493.

[39]  COOLING SEQUENCES AND COLOR-MAGNITUDE DIAGRAMS FOR COOL WHITE DWARFS WITH HYDROGEN ATMOSPHERES , 2000, astro-ph/0006363.

[40]  Alan Uomoto,et al.  The [CLC][ITAL]u[/ITAL][/CLC][arcmin]′[CLC][ITAL]g[/ITAL][/CLC][arcmin]′[CLC][ITAL]r[/ITAL][/CLC][arcmin]′[CLC][ITAL]i[/ITAL][/CLC][arcmin]′[CLC][ITAL]z[/ITAL][/CLC][arcmin]′ Standard-Star System , 2002 .

[41]  David G. Monet,et al.  Dwarfs Cooler than “M”: The Definition of Spectral Type “L” Using Discoveries from the 2-Micron All-Sky Survey (2MASS) , 1999 .

[42]  S. Seager,et al.  Clouds and chemistry: Ultracool dwarf atmospheric properties from optical and infrared colors , 2002 .

[43]  B. Edvardsson,et al.  Subgiants as probes of galactic chemical evolution , 2004, astro-ph/0407260.

[44]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[45]  Matthew R. Bate,et al.  The origin of the initial mass function and its dependence on the mean Jeans mass in molecular clouds , 2005 .

[46]  John C. Wilson,et al.  � 2001. The American Astronomical Society. All rights reserved. Printed in U.S.A. SUBSTELLAR COMPANIONS TO MAIN-SEQUENCE STARS: NO BROWN DWARF DESERT AT WIDE SEPARATIONS , 2022 .

[47]  Johns Hopkins University,et al.  Characterization of M, L, and T Dwarfs in the Sloan Digital Sky Survey , 2002, astro-ph/0204065.

[48]  R. Napiwotzki,et al.  A population model of the solar neighbourhood thin disc white dwarfs , 2004 .

[49]  et al,et al.  Near-Infrared Photometry and Spectroscopy of L and T Dwarfs: The Effects of Temperature, Clouds, and Gravity , 2004, astro-ph/0402451.

[50]  A survey for cool white dwarfs and the age of the Galactic disc , 1999, astro-ph/9903345.

[51]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[52]  C. Heiles,et al.  Reddenings derived from H I and galaxy counts : accuracy and maps. , 1982 .

[53]  D. Lamb,et al.  Evolution of crystallizing pure $sup 12$C white dwarfs , 1975 .

[54]  James Liebert,et al.  The Masses of White Dwarfs in the Praesepe Open Cluster , 2001 .

[55]  S. K. Leggett,et al.  Infrared Observations and Modeling of One of the Coolest T Dwarfs: Gliese 570D , 2001 .

[56]  et al,et al.  Infrared Photometry of Late-M, L, and T Dwarfs , 2001, astro-ph/0108435.

[57]  P. Stetson,et al.  On the Old Open Clusters M67 and NGC 188: Convective Core Overshooting, Color‐Temperature Relations, Distances, and Ages , 2004 .

[58]  R. Paul Butler,et al.  Planets Orbiting Other Suns , 2000 .

[59]  S. O. Physics,et al.  The SuperCOSMOS Sky Survey – I. Introduction and description , 2001, astro-ph/0108286.

[60]  John R. Stauffer,et al.  Spectroscopy of Very Low Mass Stars and Brown Dwarfs in IC 2391: Lithium Depletion and Hα Emission , 2004 .

[61]  Xiaoan Wu,et al.  The stellar velocity distribution in the solar neighbourhood , 2003, astro-ph/0310906.

[62]  Ž. Ivezić,et al.  A Second Stellar Color Locus: a Bridge from White Dwarfs to M stars , 2004, astro-ph/0403218.

[63]  Ben Zuckerman,et al.  The Brown Dwarf Desert at 75-1200 AU , 2004 .

[64]  David G. Monet,et al.  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. DISCOVERY OF FOUR FIELD METHANE (T-TYPE) DWARFS WITH THE TWO MICRON ALL-SKY SURVEY 1 , 1999 .

[65]  D. E. Trilling,et al.  The Substellar Mass Function: A Bayesian Approach , 2005, astro-ph/0502189.

[66]  J. Farihi,et al.  Low-Luminosity Companions to White Dwarfs , 2005 .

[67]  David G. Monet,et al.  An Improved Proper-Motion Catalog Combining USNO-B and the Sloan Digital Sky Survey , 2004 .

[68]  National Astronomical Observatory of Japan,et al.  HIPPARCOS age metallicity relation of the solar neighbourhood disc stars , 2002 .

[69]  S. Degl'Innocenti,et al.  Hipparcos open clusters and stellar evolution , 2002 .

[70]  N. Hambly,et al.  The SuperCOSMOS Sky Survey . Paper I : Introduction and Description , 2001 .

[71]  D. Kurtz Transits of Venus : new views of the solar system and galaxy : proceedings of the 196th Colloquium of the International Astronomical Union, held in Preston, Lancashire, United Kingdom, 7-11 June 2004 , 2005 .

[72]  C. Lada,et al.  Embedded Clusters in Molecular Clouds , 2003, astro-ph/0301540.

[73]  J. Clariá,et al.  DDO METAL ABUNDANCES OF HIGH-LUMINOSITY LATE-TYPE STARS IN GALACTIC OPEN CLUSTERS , 1996 .

[74]  et al,et al.  L Dwarfs Found in Sloan Digital Sky Survey Commissioning Imaging Data , 2000 .

[75]  Discovery of a Second L Subdwarf in the Two Micron All Sky Survey , 2004, astro-ph/0409179.

[76]  J. Kirkpatrick,et al.  Keck Spectra of Pleiades Brown Dwarf Candidates and a Precise Determination of the Lithium Depletion Edge in the Pleiades , 1998, astro-ph/9804005.

[77]  D. Montes,et al.  Late-type members of young stellar kinematic groups – I. Single stars , 2001, astro-ph/0106537.