Investigations of generic self disassembly using shape memory alloys

Industrial recycling is a practice of growing importance while impending 'Take Back' European legislation and economic pressures are increasing. Landfill sites are becoming exhausted and the industry could benefit from a novel approach to recycling pre and post consumer waste. Cost constraints limit the number of different products that can be recycled. Recyclers are working on broadening the range of reusable components from this waste stream, but the proposed approach would significantly increase the volume of recyclable material used in manufacturing new products. This alternative could potentially reduce recycling cost per product in the event of mandatory recycling as a wide variety of consumer electronics could be actively or self disassembled on the same generic dismantling line. The use of Shape Memory Alloy (SMA) actuators in a wide variety of consumer electronic products in the same dismantling facility was tested. The candidate products had undergone a multi-stage hierarchical temperature regime on their macro and subassembly disassemblies and results reported. Two forms of SMA actuators were employed in the designs of actuators; these were one-way Nickel-Titanium (NiTi) and two-way Copper-Zinc-Aluminum (CuZnAl) actuators.