Probabilistic Models of the Photographic Process

The photographic process, still not completely understood, is a rich source of temporal and spatial probabilistic processes, to date largely untapped by probabilists. This paper reviews applications of probability to such problems as reciprocity failure, granularity, and adjacency effects in photographic materials, concentrating on developments since 1971.

[1]  Diffusion model for the adjacency effect in viscous development , 1974 .

[2]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[3]  E. A. Trabka,et al.  Colour Granularity: A Layered Model , 1974 .

[4]  A. M. Mathai,et al.  A queueing model for reciprocity failure in the photographic grain , 1986 .

[5]  Whitman Richards,et al.  On random-dot texture discrimination , 1978 .

[6]  M. Westcott The probability generating functional , 1972, Journal of the Australian Mathematical Society.

[7]  J. W. Modestino,et al.  Generalization of the two-dimensional random checkerboard process , 1979 .

[8]  Peter A. W. Lewis,et al.  Stochastic point processes : statistical analysis, theory, and applications , 1973 .

[9]  J. C. Mccullough Fundamentals of Photographic Theory , 1948, Nature.

[10]  H. Stark Diffraction patterns of nonoverlapping circular grains , 1977 .

[11]  T. Krile,et al.  Estimation in signal-dependent film-grain noise. , 1981, Applied optics.

[12]  W. J. Anderson A multitrap model for high-intensity reciprocity failure in the photographic grain , 1984, Journal of Applied Probability.

[13]  E. A. Trabka Crowded Emulsions: Granularity Theory for Monolayers* , 1971 .

[14]  Suguru Uchida,et al.  Extended random-dot model , 1983 .

[15]  Density and granularity of clustered distributions of monosized opaque dots , 1982 .

[16]  J. H. B. Kemperman,et al.  Alternating renewal model of photographic granularity , 1973 .

[17]  T. H. James,et al.  The theory of the photographic process. , 1966 .